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VBASS enables integration of single cell gene
expression data in Bayesian association analysis of
rare variants
Guojie Zhong1,2, Yoolim A. Choi3 & Yufeng Shen 1,3,4✉

Rare or de novo variants have substantial contribution to human diseases, but the statistical

power to identify risk genes by rare variants is generally low due to rarity of genotype data.

Previous studies have shown that risk genes usually have high expression in relevant cell

types, although for many conditions the identity of these cell types are largely unknown.

Recent efforts in single cell atlas in human and model organisms produced large amount of

gene expression data. Here we present VBASS, a Bayesian method that integrates single-cell

expression and de novo variant (DNV) data to improve power of disease risk gene discovery.

VBASS models disease risk prior as a function of expression profiles, approximated by deep

neural networks. It learns the weights of neural networks and parameters of Gamma-Poisson

likelihood models of DNV counts jointly from expression and genetics data. On simulated

data, VBASS shows proper error rate control and better power than state-of-the-art methods.

We applied VBASS to published datasets and identified more candidate risk genes with

supports from literature or data from independent cohorts. VBASS can be generalized to

integrate other types of functional genomics data in statistical genetics analysis.
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About 3% of children are born with congenital anomalies or
will develop neurodevelopmental disorders (NDD)1.
Given the severe consequence of these conditions on

reproductive fitness, risk variants with large effect are under
strong negative selection and therefore have low frequency in the
population. Recent genetics studies identified hundreds of risk
genes of these conditions, largely by rare de novo variants2–11,
however, the majority of risk genes remain unidentified10,12–15,
due to challenges in statistical power in analysis of rare variants16.
This is because that de novo coding variants with large effect
sizes, including gene disruption variants and damaging missense
variants, usually have low mutation rates and very low allele
frequency in a study17. Several recently published methods
attempt to increase power using additional information.
EncoreDNM18, m-TADA19 and M-DATA20 are statistical models
that improve power by leveraging pleiotropic effect across con-
ditions. DECO21 integrates pathways and gene sets information
to prioritize risk genes. Here we describe a method that integrates
gene expression data of normal tissues with genetic data to
improve power of finding new risk genes through rare variants.

Cell-type specific gene expression has long been used qualita-
tively for interpretation of biological mechanisms in develop-
mental biology and genetics. Previously we have shown that high
expression in developing heart and diaphragm is associated with
increased burden of de novo coding variants in congenital heart
disease (CHD)7 and congenital diaphragmatic hernia9, respec-
tively. We have also shown that cell-type specific expression in
brain is associated with plausibility of autism spectrum disorders
(ASD) risk genes22,23. It is clear that gene expression profile can
inform association analysis of rare variants for risk gene dis-
covery. However, the ability to improve power in gene discovery
using expression data has been hindered by the lack of rigorous
statistical methods and cell type specific expression data from
relevant tissues during development. Recent efforts in cell atlas of
human and model organisms have been generating large amount
of single cell expression data of adult tissues24,25 in addition to an
increase in various developmental stages26–29. Here we describe a
novel computational method that leverages expression data with
probabilistic models to improve statistical power of risk gene
discovery.

VBASS (Variational inference Bayesian ASSociation), takes a
vector of expression profile, such as cell-type specific expression
from single cell RNA-seq and models the priors of risk genes as a
function of expression profile of multiple cell types. VBASS uses
deep neural networks to approximate the function and uses semi-
supervised variational inference to estimate the parameters.
Although optimized for scRNA-seq data, VBASS could also be
applied to bulk RNA seq data with a simplified framework. We
compared the performances of VBASS with extTADA30, a state-
of-the-art Bayesian method which does not use expression data as
input, under two conditions (bulk and scRNA-seq data) by both
simulated and published de novo variants datasets to assess error
control and statistical power. We also compared with DECO21 on
published de novo variants datasets to assess the difference
between gene expression data and curated gene set data for power
improvement.

Results
VBASS models disease risk association with both genetics and
expression data. VBASS is a Bayesian mixture model with
learnable priors (Fig. 1). We model the number of genetic var-
iants of interest (e.g., LGD, likely gene disruption, or Dmis,
damage missense de novo variants) in the gene as a sample drawn
independently through mixture of Poisson and Gamma-Poisson
(Negative binomial) Distributions (“Methods”). Such Gamma-

Poisson distribution has been proved useful in modeling the
sparse de novo variant data12,30. Instead of using a naïve prior
that all genes share the same probability of being disease risk, we
assume that this prior should be gene specific. And it could be
inferred from the spatiotemporal expression data of fetal devel-
opment of corresponding organ as disease related genes are likely
to be involved with similar pathways and regulation processes10.
In VBASS, we model this prior πg as a function of expression
profiles that could be approximated with a neural network f E
(Fig. 1, Supplementary Fig. 1, and “Methods”). With such
approximation it is possible to take the advantage of the state-of-
art stochastic gradient descent method31. Generally, VBASS will
assign a higher disease risk to genes with relatively high expres-
sion in disease associated cell types while low expression in non-
associated cell types, and vice versa.

VBASS could also take bulk RNA seq data of certain organ or
cell type as input when prior knowledge of its disease risk
association is available. For example, the increased burden of
damage variants of high heart expression genes in CHD7. In that
case xg is a scalar and f E could be parameterized by three
parameters (A;B;C) that corresponds for a linear transformation
followed by sigmoid activation (“Methods”). This sigmoid-shape
function could quantify the fact that genes with higher expression
in the corresponding organ or cell type are more likely to harbor
disease risk variants.

We trained VBASS in a semi-supervised manner with
stochastic gradient descent method to estimate the parameters
(“Methods”). While for the bulk version with scalar input, VBASS
can be trained in a completely unsupervised manner with MCMC
(“Methods“). The estimated parameters were used to calculate
Posterior Probability of Association (PPA) and False Discovery
Rate (FDR) for all genes (“Methods”).

VBASS showed better power than extTADA on simulated data
with bulk RNA-seq expression. We tested the performance of
VBASS and extTADA on simulated CHD dataset (“Methods”).
As expected, both models showed good false discovery control
and local false discovery control (Supplementary Fig. 2). VBASS
outperformed extTADA with better recall under same precision
level (Fig. 2a) under sample sizes from 2645 to 20,000. Although
the difference in power decreases with increasing sample size,
VBASS still outperformed extTADA by roughly 10% increase of
recall at sample size of 10,000, which is feasible for CHD in the
next few years.

To test the power of VBASS with respect to the size of genes,
we calculated the recall rate at same significance levels (FDR
≤0.05) on both models for genes with different mutation rates.
VBASS showed better statistical power especially for genes with
higher mutation rates under small sample sizes (Fig. 2b). As the
sample size increases, the power difference of VBASS and
extTADA becomes smaller on large genes, while VBASS still
outperforms extTADA on medium-mutation-rate genes (Fig. 2b).
Overall, our simulation results showed that VBASS can increase
the statistical power for prioritizing disease risk genes by
estimating risk prior as a function of expression.

VBASS showed better power than extTADA on simulated data
with scRNA-seq expression. We ran VBASS and extTADA
separately on the simulation dataset (“Methods“). Both models
showed good false discovery control (Fig. 3a). Which means that
the estimated error rates from both models are close to the real
error rates. In other words, if out model identified 100 genes at
significance level 0.05, the real error late will be close to 5%, which
is 5 false positives. To test the statistical power of VBASS and
extTADA, we plotted the precision-recall curve using the output
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posterior probabilities from VBASS, extTADA and the real
parameters we used in simulation. VBASS outperformed
extTADA with higher recall under same precision (Fig. 3b). In
other words, under same significance level (0.05 or 0.1), our
model can identify more genes, while the error rate remains the
same, as stated in (Fig. 3a). With those two features, our model
can identify more true disease risk genes at same sample size.
Further comparison showed good correlation between the prior
value �πg informed by VBASS and real πg we used in simulation
(Fig. 3c), indicating that VBASS could reconstruct the prior of
being risk through single cell expression data. Moreover, we
assessed the association between expression profile x and π via
spearman correlation, the result of VBASS is close to real values
(Fig. 3d). Overall, those results showed that our model can not

only reach higher statistical power on simulation data set than
extTADA but also uncover the association between cell type
expression profiles and disease risk.

VBASS identified novel CHD candidate risk genes on pub-
lished DNV data. We applied VBASS to a CHD data set with
DNVs from 2645 trios13. We used the mouse embryonic E14.5
heart bulk RNA-seq data to set gene expression rank
percentile6,7. The estimated distribution of expression rank
under null and alternative hypothesis showed most of the risk
genes are enriched in rank percentile ≥75% (genes with rank
percentile ≥0.75 are roughly 3 times more likely to be risk than
other genes) (Fig. 4a; Table 1), consistent with previous burden
analysis of de novo variants7. With FDR ≤0.1, we identified 49

Fig. 1 Model architecture of VBASS. The input is a de novo variant table of patient cohort with either single cell or bulk expression profile of the
corresponding organ during fetal development. VBASS will estimate the gene specific prior from the expression profile via neural networks (single cell
version) or a sigmoid function (bulk version) and the effect sizes of different types of variants. It will then calculate the posterior probability of each gene’s
association with disease based on the estimated parameters. The significance is determined by False Discovery Rate (FDR) estimation for each gene based
on the posterior probability.

Fig. 2 Performance comparison of bulk version VBASS and extTADA on simulation. Figure titles are the cohort sizes during simulation. a Precision-recall
in two models, only show the part with FDR ≤0.2 for extTADA and VBASS, only show the part with FDR ≤0.01 for Poisson test. b Comparison of recall (y-
axis) for genes sets with different mutation rates (x-axis).

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05155-9 ARTICLE

COMMUNICATIONS BIOLOGY |           (2023) 6:774 | https://doi.org/10.1038/s42003-023-05155-9 | www.nature.com/commsbio 3

www.nature.com/commsbio
www.nature.com/commsbio


candidate risk genes. In contrast, using the extTADA method,
we were able to identify only 40 candidate genes (Fig. 4b, c,
Table 2, Supplementary Data 4). Among the gene that only
detected by VBASS, FLT4 was reported to be a risk gene via
combined analysis of de novo and inherited variants in the
original paper, while TSC1 and FBN1 were in their curated
CHD gene dataset from literature search13,32. CHD4 was
reported to be significantly associated with CHD in a UK CHD
cohort of 1891 probands8, while 3 (FRYL, SETD5, KMT2C)
have both LoF and missense variants carriers, 2 (GANAB,
KDM5A) have only missense variants carriers in that cohort.
Furthermore, 4 (CHD4, SETD5, KMT2C, FBN1) are sig-
nificantly associated with neurodevelopmental disorders33,
while 11 (CHD4, FRYL, GANAB, SETD5, MINK1, ANK3,
KMT2C, IQGAP1, TSC1, KDM5A, FBN1) have both LoF and
missense variants carriers, and 2 (CAD, SLIT3) have only

missense variants carriers in that cohort. Overall, these genes
have additional genetic evidence in other cohorts and are
plausible candidates. We noticed that DECO identified several
other candidate risk genes when compared to VBASS (Sup-
plementary Fig. 3a), but they showed few additional genetic
evidence in the UK cohort (Supplementary Data 5). These
results indicate that the assumption of VBASS is biologically
sound and suggests its higher statistical power even in lower
cohort size.

VBASS identified novel ASD candidate risk genes on published
DNV data. Previous studies have shown that gene expression in
multiple cell types in the brain is associated with ASD risk22,23,34.
This is in part what motivated the design of VBASS. We obtained
ASD DNV data from a recent preprint15 that combined exome
and genome data from four studies (Methods), and single cell

Fig. 3 Performance of single cell version VBASS on simulation data. a Plot of true false discovery rate (real.FDR, y axis) at different FDR cutoff (x axis)
estimated by extTADA and VBASS. Genes in the training data were removed. b Comparison of precision recall for extTADA and VBASS, only shown for
the part with FDR ≤0.5. Genes in the training data were removed. c Scatter plot of disease risk prior (π) that we assigned in simulation (y-axis) and
informed by VBASS (x-axis). Genes were colored by labels and whether used in semi-supervised training, where TN and TP correspond to true negative
and true positive, respectively. d Comparison of correlation between real disease risk prior and cell type expression (y-axis) versus correlation between
VBASS informed prior and cell type expression (x-axis). Each dot represents a cell type. Gray shading showed confidence interval of linear regression
estimated by stat_smooth function in R ggplot2 package.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05155-9

4 COMMUNICATIONS BIOLOGY |           (2023) 6:774 | https://doi.org/10.1038/s42003-023-05155-9 | www.nature.com/commsbio

www.nature.com/commsbio


RNA-seq data of human fetal midbrain and prefrontal cortex
from two publications (“Methods”)26,27. We applied VBASS and
extTADA to the full ASD data set with 16,616 trios. VBASS
identified 122 genes with PPA above 0.8 (Supplementary Data 6).
To compare the performance in identification of novel candidate
risk genes, we removed the known risk genes used in training and
calculate Bayesian FDR of all other genes with VBASS and
extTADA (Methods). Then we compared the candidate genes
identified by VBASS and extTADA at significance level 0.05 and
0.1 (FDR ≤0.05 and FDR ≤0.1 respectively). At significance level
0.05, VBASS identified 51 genes (Supplementary Data 7), among
which 5 were not identified as candidates by extTADA (Fig. 5a,
Supplementary Data 7). Among the 5 genes, 2 (DLG4, PAX5)
were reported to be risk genes in SFARI35 data base (release 2021
Q4) with score of 1 while not in our training gene list. METTL23
is a transcriptional partner of GABPA and essential for human
recognition36, and disruption of METTL23 was reported to cause
mild autosomal recessive intellectual disability37. ATF4 was
reported to have significant altered expression in the middle
frontal gyrus of ASD subjects38. At significance level 0.1, VBASS
identified 75 genes (Supplementary Data 7), where 6 were not
identified by extTADA (Fig. 5a, Supplementary Data 7). Among
the 6 genes, 2 (ZMYND8 CASZ1) were scored 1 in SFARI data
base and CMPK2 was scored 3. LMTK3 was reported to cause
behavioral abnormalities such as locomotor hyperactivity and
reduced anxiety in mice knock-out models39,40. Furthermore, 7
out of the 11 genes identified only by VBASS (DLG4, METTL23,
SPRY2, LMTK3, PFN2, CASZ1, ZMYND8) have additional
genetic evidence in related cohorts33. There were six genes
(CCDC40, FUBP3, PRKAR1B, SIN3A, ITGB5, PMM2) identified
only by extTADA but not by VBASS, likely because of their low
detection rates or co-expression strength with other candidates in
the single cell datasets. Compared with VBASS, DECO identified
a similar number of additional candidate genes. Most of these
genes (25 out of 35) are from a single gene set (gene ontology
term “Positive regulation of gene expression”). (Supplementary
Fig. 3b, Supplementary Data 8).

Fig. 4 Performance comparison of VBASS and extTADA on CHD data. a Function of disease risk prior on expression rank percentile estimated by VBASS.
b Genes identified by VBASS and extTADA at significance level 0.1. c FDR of genes in extTADA (y-axis) and VBASS (x-axis), genes were colored by
significance in both models (red), only in VBASS (purple) or only in extTADA (green) at significance level 0.1 (FDR ≤0.1).

Table 1 Estimated VBASS parameters in CHD data. Mean,
posterior mean; sd, standard error; 2.5% and 97.5%,
confidence interval; n_eff, effective sample number in
MCMC; Rhat, convergence diagnostic in MCMC.

Mean sd 2.50% 97.50% n_eff Rhat

π0 0.04 0.01 0.03 0.05 1845.42 1.00
A 104.15 87.67 20.01 351.78 2263.73 1.00
B 0.74 0.02 0.71 0.78 2136.99 1.00
C 0.28 0.10 0.09 0.47 2093.73 1.00
�γLGD 19.95 5.43 10.32 31.87 2745.30 1.00
�γDmis 11.79 3.60 5.81 19.36 3013.96 1.00
�βLGD 0.84 0.02 0.82 0.89 2193.48 1.00
�βDmis 0.90 0.07 0.83 1.07 2144.47 1.00

Table 2 Genes identified by VBASS but not extTADA.
dn_LGD, de novo LGD variants; dn_Dmis, de novo Dmis
variants.

Gene
symbol

dn_LGD dn_Dmis VBASS
FDR

Expression
rank

extTADA
FDR

CHD4 0 3 0.033 0.990 0.119
FRYL 2 0 0.036 0.837 0.123
GANAB 1 1 0.039 0.934 0.133
SETD5 1 1 0.043 0.949 0.138
FLT4 2 0 0.047 0.734 0.102
CAD 0 3 0.051 0.853 0.161
MINK1 0 2 0.054 0.875 0.144
ANK3 2 0 0.062 0.948 0.177
SLIT3 1 1 0.066 0.860 0.183
KMT2C 1 2 0.069 0.792 0.188
IQGAP1 0 2 0.073 0.856 0.172
TSC1 1 1 0.080 0.728 0.110
KDM5A 0 2 0.084 0.859 0.194
FBN1 0 3 0.089 0.928 0.212
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To further investigate whether single cell data is more
informative than bulk data in VBASS, we compared the results
with bulk version VBASS predictions using pseudo bulk
expression data that curated from the single cell data
(“Methods”). As expected, in complex conditions like autism,
bulk version VBASS failed to detect some well-known risk genes
like TSC2, CSNK2B, SPRY2, and ZMYND8 (Supplementary
Data 7), because it does not have the information to model the
correlation between cell type heterogeneity and disease risk.
Finally, we studied what are the cell types that associated the
most with disease risk. VBASS is designed to assign high risk
prior to genes that highly expression in certain disease related
cell types while low in other cell types, as shown in
(Supplementary Fig. 4a, Supplementary Fig. 4b), risk genes
tend to express highly in both progenitor and mature neuronal
cell types (genes on the top, Supplementary Fig. 4b) or only a
few specific neurons (genes in the middle, Supplementary
Fig. 4b). VBASS quantified this co-expression pattern by non-
linear functions (Supplementary Fig. 5a), and we can show the
contribution of each cell type in the non-linear function
qualitatively by PCA analysis (Supplementary Fig. 5b) or
quantitively by Spearman correlation (Fig. 5b). We notice that
oculomotor / trochlear nucleus (hOMTN), GABAergic neurons
(hGaba) and dopaminergic neurons (hDA1) in gestation week
9-10 are more associated with autism risk, while microglia cells
and endothelial cells (hEndo) are less associated with autism
risk (Fig. 5b). This observation is consistent with previous
evidence of abnormalities in GABAergic neurons and synapses
in neurodevelopmental disorders characterized by a shared
symptomatology of ASD symptoms41, while reductions in
GABA have been reported in several brain regions in children
with ASD42,43. There were also evidences that dopaminergic
dysfunctions were associate with autistic-like behavior44,45.

Discussion
In this study, we described VBASS for identification of candidate
risk genes by joint analysis of de novo variants of cases and gene
expression profile of normal samples. The core idea of the
method is that prior probability of a gene increase disease risk is a
function of expression profile in relevant cell types, and that we
can estimate the parameters of the function from the data in an
empirical Bayesian framework. For bulk RNA-seq data, we set the
function to be a sigmoid function with three parameters. For
scRNA-seq data, we use deep neural networks to approximate the
function and learn the contribution of cell types jointly with
genetic data. Using simulation, we showed that VBASS have
accurate error rate control and better statistical power than
existing method extTADA under both scenarios.

We applied VBASS to a published CHD DNV data set and
estimated that high-expression genes are approximately 3 times
more likely to be risk genes than low-expression genes in devel-
oping heart. We identified 14 more candidate risk genes, 6 of
which have additional support in independent cohorts. We
applied VBASS to a published ASD DNV data set and identified 5
and 6 more candidate genes at significance level 0.05 and 0.1
respectively, 8 of them have literature support or additional
genetic evidence in neurodevelopmental disorders. Moreover, we
showed that gene expression profiles of GABAergic neurons and
dopaminergic neurons during gestation week 9-10 are strongly
associated with autism risk, indicating their potential roles in
neural circuits formation.

VBASS is based on the biological hypothesis that gene
expression level in relevant cell or tissue types informs the
plausibility of being a disease risk gene. The bulk-RNA seq ver-
sion is optimized for a single expression profile that is informative
of disease risk, such as bulk RNA sequencing data for congenital
heart disease. The single cell RNA-seq version is optimized for the

Fig. 5 Performance comparison of VBASS and extTADA on ASD data. a FDR of genes in extTADA (y-axis) or VBASS (x-axis). b Spearman correlation
between cell type expression and disease risk prior ðπÞ. The cell types from two single cell data sets were separated and ordered by correlation with π,
respectively.
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conditions in which multiple cell types and time points are
associated with disease risk. Furthermore, the main assumption of
VBASS is that the disease risk prior is a function of gene
expression levels in cell types or tissues. The validity of this
assumption can be examined qualitatively using PCA of the gene
expression matrix. If the assumption holds, we should observe a
partial separation of known risk genes or potential risk genes
(such as de novo LGD variants in cases with developmental
disorders) from other genes by one of first few principal
components.

Generally, single cell version is more informative than bulk
version, especially for heterogeneous conditions like autism in
which different risk genes may have critical functions in different
cell types. One alternative approach to improve power based on
informative non-genetic data is to calculate p-values for each gene
using genetic data and then optimize FDR estimation using non-
genetic data as covariates46–48, While it is a generalizable
approach, these methods require p values to have proper dis-
tributions (uniform) under the null. In the analysis of de novo or
ultra-rare variants, the data is usually too sparse to support a
proper distribution of p-values under the null. VBASS does not
have this limitation. Other methods that rely on information like
curated gene sets or pathways can increase power for genes
included in the pre-defined sets.

A limitation of VBASS is that it only estimates the association
of cell types with disease risk. It is not designed to answer
questions about whether a certain cell type confers causality in the
diseases caused by risk variants. Additionally, the performance of
VBASS is partially determined by how well the expression data
captures true expression states of genes. In this study, we used
average expression of genes in cells within a cell type inferred
from single cell data. This approach has limitations in repre-
senting rare and transient cellular states. More advanced repre-
sentation, like RNA velocity49,50, together with more
comprehensive measurements of cell types may improve
the model.

Methods
The probabilistic model of VBASS. VBASS is a Bayesian mixture model with
learnable priors. VBASS assumes the number of genetic variants of interest (LGD
or Dmis de novo variants) in the gene dgv are drawn independently through this
generative process, given Mgv being the aggregated background mutation rate for
variant type v in gene g and xg being the cell type specific gene expression profiles
in gene g:

πg ¼ f Eðxg Þ
yg � Bernoulliðπg Þ

kgv ¼
kv if yg ¼ 1

1 otherwise

(

θgv ¼
θv if yg ¼ 1

1 otherwise

(

γgv �
Gamma kgv ; θgv

� �
if yg ¼ 1

1 otherwise

(

dgv �
Poisson γgv �Mgv

� �
if yg ¼ 1

Poisson Mgv

� �
otherwise

8><
>:

ð1Þ

πg is a gene specific prior probability of being disease risk. yg is a binary random
variable that indicates the risk status of a gene, which follows a Bernoulli
distribution of πg . We use neural network f E to infer πg from gene expression data
xg with a penalty term of Kullback–Leibler divergence over average proportion of
disease risk gene, �π. (Supplementary Fig. 1). This penalty term could be replaced by
a cross-entropy loss term if the label of gene is known, making it possible for semi-
supervised training51.

By default, we used a 32-dim encoding module, followed by a 2-dim sampler
module for πg . Each module consists of a linear layer followed by ELU activation

and layer normalization layers. We apply the same reparameterization trick as
conventional variational autoencoders in f E with Bernoulli sampler52.

γgv is a random variable that denotes the enrichment rate of damage variant v in
the patient cohort, which is also known as the relative risk of this gene. γgv is drawn
independently through Gamma distribution pðγgv jkgv; θgvÞ. kgv; θgv are conditioned
on yg , under null they are equal to 1 while under alternative, they are equal to kv
and θv , respectively. We assume kv and θv are shared across all disease risk genes to
reduce the number of parameters, similar to the assumption in TADA and
extTADA12,30..

The loss function is given by the evidence lower bound (ELBO),

ELBO ¼ �KL½qðyjxÞjjpðyÞ� �Eq yjxð Þlog p djy� �� �
ð2Þ

The KL penalty term regularized the gene-specific prior π by the
hyperparameter �π, which reflects the average proportion of risk genes:

KL qðyjxÞjjp y
� �� � ¼ KL½Bernoulli yjπ;f EðxÞ

� �jjBernoulliðyj�πÞ� ð3Þ
The expectation term quantified the log likelihood of d conditioned on y

integrated on the distributions parameterized by π:

Eq yjxð Þlog p djy� �� � ¼ Z
Poisson djγ �M; kv ; θv

� � � Bernoulli yjπ; f EðxÞ
� �

dy ð4Þ

f E; kv ; θv are the parameters to learn, we use stochastic gradient decent to
estimate them. The estimated parameters were used to calculate the posterior
probability of association (PPA) for each gene being risk or not:

PPA ¼
πg � GammaPoisson dgvjkv ; θv ;Mgv

� �
πg � GammaPoisson dgvjkv ; θv ;Mgv

� �
þ 1� πg

� �
� Poisson dgvjMgv

� �
ð5Þ

For conditions where gene expression data xg is a scalar, i.e., bulk RNA-seq data
or average expression data of a certain cell type in scRNA-seq data, we could
rewrite f E as a function with sigmoid shape, corresponding to a linear
transformation with sigmoid activation:

f Eðxg Þ ¼ �π � Sigmoidðxg jA; B; CÞ
Sigmoidðxg jA; B; CÞ ¼ C þ L

1þA � expð�xgþ BÞ

L ¼ 1� Cð Þ � A
log exp Að Þþ exp A � Bð Þð Þ�logðexp A �Bð Þþ 1Þ

ð6Þ

while the other parts of the model remain the same.
Given PPA of all genes, we calculate Bayesian false discovery rate (FDR) by

estimated false discovery proportion following the method described in He et al.,
201312:

FDRk ¼
∑k

i¼1 1� PPAi

� �
k

ð7Þ

where i is the rank index of genes (start with highest PPA), and FDRk is the
estimated FDR of the gene ranked at k.

Parameter inference for VBASS. The parameters of VBASS could be inferenced
with either unsupervised or semi-supervised training. For the bulk version, there
are only six parameters to be estimated, �π; θv ; kv ;A;B;C, which is possible for
complete unsupervised training via MCMC. In practice, we used Rstan package
with 4 chains and 2000 iterations. For the neural network version, we recommend
two settings to avoid converging issues and keep good control of false discovery
rate. First is setting the hyperparameter of KL penalty to the observed average
proportion of risk genes, in practice we recommend estimating that using
extTADA or running VBASS without gene expression data. We showed that either
higher or lower KL penalty will result in improper false discovery control (Sup-
plementary Fig. 6). Second is to train in a semi-supervised manner. In practice, we
trained the model with two training steps. First, we pre-trained our model using
known risk genes labeled as positives and genes that harbor LGD variants in
control cohort as negatives, replacing the Bernoulli KL penalty with cross-entropy
loss51. The known risk genes (59 in total) were randomly picked from SFARI35

(release 2021 Q4) scored 1 genes, while negative controls (86 in total) were picked
from genes with LGD variants in a control cohort14 (Supplementary Data 1).
During pre-training we set large learning rate to make the model converge faster.
The parameters estimated from pre-training were then used as initial values in the
second step, unsupervised training, which uses all genes without labels with
reduced learning rate after each epoch. In practice, we used 50 epochs of semi-
supervised pretraining and 60 epochs of unsupervised training. After training, we
calculated PPA for all genes using the estimated parameters. For the simulation
dataset, we estimated FDR on all genes to measure the statistical power. For the real
dataset, we removed the known risk genes selected as positives in training, which
should have very large PPA due to their large effect sizes (Supplementary Fig. 7),
when we estimate FDR to identify candidate novel risk genes.

De novo variants (DNV) and gene expression data. We obtained DNV data sets
from a publication on congenital heart disease (CHD)13 of 2645 parent-offspring
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trios (Supplementary Data 2) and a preprint on autism spectrum disorder (ASD)15

of 16,616 trios (Supplementary Data 3). The subjects in first data set (CHD) were
recruited to the Congenital Heart Disease Network Study of the Pediatric Cardiac
Genomics Consortium53 (CHD GENES: ClinicalTrials.gov identifier
NCT01196182). The institutional review boards of Boston’s Children’s Hospital,
Brigham and Women’s Hospital, Great Ormond Street Hospital, Children’s Hos-
pital of Los Angeles, Children’s Hospital of Philadelphia, Columbia University
Medical Center, Icahn School of Medicine at Mount Sinai, Rochester School of
Medicine and Dentistry, Steven and Alexandra Cohen Children’s Medical Center
of New York, and Yale School of Medicine approved the protocols. All subjects or
their parents provided informed consent13. The second data set (ASD) is a com-
bined data set from exome or whole genome sequencing data of the SPARK
consortium54, Simons Simplex Collection55, Autism Sequencing Consortium56,
and MSSNG57. All participants were recruited to SPARK under a centralized
institutional review board (IRB) protocol (Western IRB Protocol no. 20151664). All
participants provided written informed consent to take part in the studies. Written
informed consent was obtained from all legal guardians or parents for all parti-
cipants aged 18 and younger and for all participants aged 18 and older who have a
legal guardian15. For CHD analysis using bulk version of VBASS, we input the gene
expression rank value, ranged from 0-1, for each gene. The gene expression rank
was based on bulk RNA-seq data of mouse developing heart at E14.5, inspired from
previous publications6,7. For ASD analysis using single cell version of VBASS, wWe
obtained single cell RNA-seq data of human fetal midbrain and prefrontal cortex
from two publications26,27. We used the combination of developmental time and
cell ontology annotations as described in the two publications to define cell types.
Small clusters of cell types with less than 10 single cells were removed. For each
gene and cell type, we calculate the proportion of cells that express the gene in each
timepoint specific cell types, ranged from 0-1, as the input vector to VBASS. To run
the bulk version of VBASS on ASD, we generated pseudo bulk gene expression
value, ranged from 0-1, as the proportion of cells that express the gene in all cell
types and input to bulk version of VBASS, while other settings remain as default.
As we are using single cell data from two publications, we generated the pseudo
bulk data and run bulk version of VBASS separately to avoid the impact of batch
effect.

Annotation of de novo variants and background mutation rate calculation. We
used ANNOVAR58 and VEP59 to annotate variants, protein-coding consequences,
and predicted damaging scores for missense variants. We classified variants as LGD
(likely gene disrupting, including frameshift, stop gained/lost, start lost, splice
acceptor/donor), Dmis (Damage missense variants, defined by REVEL60 score
≥0.5), missense, or synonymous. For each variant type, we calculated the expected
number of variants based on a background mutation rate model7,61 given the
sample size. In-frame deletions/insertions (multiple of 3 nucleotides) and other
splice region variants were excluded in the following analysis. Variants in olfactory
receptor genes, HLA genes or MUC gene family were excluded in further analysis.

Generation of simulation datasets. We simulated two datasets to test VBASS’s
performance with bulk and scRNA-seq datasets, respectively. For the first scenario,
we first estimate the parameters based on real dataset and then used the estimated
hyperparameters to generate the simulated dataset based on the Bayesian mixture
model. Specifically, we randomly assigned 3.7% of genes as risk gene, then we drew
the covariates (gene expression rank) of risk genes from the sigmoid distribution
function. The de novo damage variants were drawn from Gamma-Poisson dis-
tribution with relative risk of 20 and 12 for LoF and Dmis, respectively. For non-
risk genes, we drew covariates from a uniform distribution and de novo variants
from Poisson distribution. We did the simulation under different sample sizes
ranging from 2645 to 20,000. For each sample size setting, we simulated 100
datasets and fit both models on each simulated dataset independently to estimate
the hyperparameters, which were used to calculate the posterior probability of
association (PPA) and then a Bayesian false discovery rate (FDR) by false discovery
proportion implied by it. We performed single-tail Poisson tests independently on
each simulated dataset to show the baseline statistical power, where the FDR were
calculated by the Benjamini-Hochberg (BH) method.

For the second scenario, the simulation is based on real single cell dataset,
where we created a non-linear function that maps cell-type specific expression to
prior of being risk with following steps. First, we did a singular value
decomposition (SVD) on the expression data of 59 known ASD risk genes (picked
randomly from SFARI35 scored 1 genes) and 86 negative control genes (picked
randomly from genes with LGD variants in control cohort14) (Supplementary
Data 3). Next, we fit a logistic regression model with elastic net penalty on the eigen
vectors that explain 95% of the variance. The regression model was applied to all
other genes and the output probabilities were squared and scaled to have an
average of 3.2%, which matches the average proportion of risk genes estimated
from extTADA model. This value served as a simulated prior of being risk, from
which disease risk genes were randomly sampled (~600 risk genes). The de novo
damage variants were drawn from Gamma-Poisson distribution for disease risk
genes while Poisson distribution for non-risk genes with same sample size and
relative risk as in real ASD dataset. We performed the simulation 50 times with
same simulated prior and disease risk genes, then estimated the hyperparameters
and calculate the PPA and Bayesian false discovery rate (FDR) independently on

each simulated dataset for both models. For VBASS, we randomly selected
~100 simulated risk genes and ~300 non-risk genes as label for the semi-supervised
training. Those genes were excluded for comparison.

Comparison with DECO on CHD and ASD. We performed DECO21 on real CHD
and ASD de novo variants dataset following the recommended protocols. We
downloaded 21604 gene sets (≥5 genes) from MSigDB62 dataset (Version March
2020). We ran DECO for each gene set and selected the gene set with lowest
p-value for comparison with VBASS. The gene sets were GO_HEART_DEVE-
LOPMENT and GO_POSITIVE_REGULATION_OF_GENE_EXPRESSION for
CHD and ASD, respectively. We calculated the Bayesian FDR using PPA for
DECO in the same way as VBASS.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data sets (de novo variants and gene expression data) were obtained from
publications and available from the corresponding publications. The accession number of
the single cell expression data used in this paper are GSE76381 and GSE104276. We also
included the annotated de novo variants in the supplementary data 2 (CHD) and
supplementary data 3 (ASD). All source data underlying the figures were provided in
Supplementary Data 9.

Code availability
VBASS is available on GitHub: https://github.com/ShenLab/VBASS and Zenodo: https://
doi.org/10.5281/zenodo.801822763.
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