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Statistical models of the genetic etiology of congenital 
heart disease 
Guojie Zhong1,2 and Yufeng Shen1,3,4,*   

Congenital heart disease (CHD) is a collection of anatomically 
and clinically heterogeneous structure anomalies of heart at 
birth. Finding genetic causes of CHD can not only shed light on 
developmental biology of heart, but also provide basis for 
improving clinical care and interventions. The optimal study 
design and analytical approaches to identify genetic causes 
depend on the underlying genetic architecture. A few well- 
known syndromes with CHD as core conditions, such as 
Noonan and CHARGE, have known monogenic causes. The 
genetic causes of most of CHD patients, however, are unknown 
and likely to be complex. In this review, we highlight recent 
studies that assume a complex genetic architecture of CHD 
with two main approaches. One is genomic sequencing studies 
aiming for identifying rare or de novo risk variants with large 
genetic effect. The other is genome-wide association studies 
optimized for common variants with moderate genetic effect. 
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Introduction  
Congenital heart disease (CHD) is an anatomically het-
erogeneous condition. Historically, CHD is a severe 
condition with high mortality and morbidity. Recent 
advance in medicine has improved survival, but many 
CHD patients still have lingering medical problems later 
in life. As a result, CHD still causes reduced productive 
fitness. A study on Tetralogy of Fallot (TOF) reported 

that the average number of offspring per CHD in-
dividual is about 30% smaller than age-matched controls  
[1]. Therefore, genetic factors with large effect size must 
be under strong negative selection and be rare in the 
population. In fact, the genes of known syndromes with 
CHD as a core condition, such as PTPN11 in Noonan  
[2–6] and KMT2D in Kabuki [7,8], often harbor de novo 
mutations in individuals with CHD. Consistently, 
identification of new risk genes by de novo variants 
(DNVs) is the main study design in several recent pro-
minent genetic studies in CHD [9••–11]. Overall, the 
population-attributable risk percentage (PAR%) of CHD 
explained by de novo coding variants is about 20–30% in 
syndromic cases that have additional congenital anoma-
lies or neurodevelopmental disorders, and likely less 
than 10% in isolated cases [9••–11]. 

=PAR
Incidence Rate in total population Incidence Rate unexposed

Incidence Rate in total population

=h
Phenotypic Variation Due to Genetic Factors

Total Phenotypic Variation
2

The bulk of CHD risk remains unknown. A range of 
CHD subtypes has high heritability (h2) [12–16]. A 
common hypothesis is that CHD in most of affected 
individuals is caused by multiple environmental and 
genetic factors, and most of these genetic factors may 
have moderate or small effect. Genome-wide associa-
tion studies (GWAS) are designed to identify such ge-
netic risk by searching for association of common 
variants with moderate effect size [17••]. Figure 1 
summarizes two genetic models for CHD. Under the 
“Denali” model, which is essentially monogenic, the 
genetic risk is dominated by highly penetrant muta-
tions (“peaks”). Classical Mendelian CHD genes are 
under this model. Under the “Everest” model, the 
aggregated genetic risk from common inherited variants 
forms a high plateau of the disease liability that may be 
sufficient to cause CHD in most of the patients. Rare or 
DNVs with larger effect (“peaks”) may still play a role 
in these patients, especially in those with severe or 
syndromic conditions. 

Overall, recent human genetic studies on CHD are 
driven by genomic technological advances, meticulously 
enrolled large cohorts, and advanced statistical models. 
In this review, we will summarize the statistical methods 
used in recent studies. 
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Main statistical models of recent genetic 
association studies 
The basic model of statistical analysis of rare and 
common variants is similar. Under the null model, which 
states that a variant or a gene is not associated with CHD 
risk, the allele frequency in cases follows a statistical 
distribution with parameters determined by theoretical 
models or empirical data of a population without CHD 
(Table 1). In a frequentist approach, one can assess the 
null model by estimating type-I error, that is, p-value, as 
the probability of data as extreme as what was observed 
in the cases based on the null model. A candidate risk 
variants or genes are identified if one can reject the null 
hypothesis when the p-value is smaller than a type-I 
error threshold. In a Bayesian approach, one must define 
an alternative model, which states that the variant or 
gene is associated with CHD risk and the effect size 
follows a specified distribution. The model has two key 
parameters, the prior probability of being associated with 
the risk and the effect size, that is, the magnitude of the 
association, often defined as odds ratio or relative risk 
(Table 1). 

A crucial issue in genome-wide analysis is multiple test 
adjustment. The standard approach in GWAS is to use 
Bonferroni correction of p-values to minimize false dis-
covery (Table 1), with a commonly used threshold of 5e- 
8, which reflects the effective number of independent 
common variants in human genome, no matter how 

many SNPs are tested. The same approach can be ap-
plied to gene-based tests used in analysis of rare variants, 
adjusting for about 20 000 protein-coding genes. This 
approach is straightforward and effective in preventing 
false discoveries. However, it errs on being conservative. 
More powerful methods, based on false-discovery rate 
(FDR) or q-values, have been used in recent studies. We 
will review the complexity of this approach in the sec-
tion on de novo-coding variant analysis. 

Analysis of de novo-coding variants 
DNVs are new mutations that are present in offspring 
but not in parents. DNVs, especially the ones located in 
protein-coding regions, are a group of variants with lar-
gest effect size a priori. In Zaidi et al., 2013 [18], the 
Pediatric Cardiac Genomics Consortium team analyzed 
exome sequencing data of 362 CHD case–parent trios 
and 264 control trios. Compared with controls, CHD 
cases showed an excess of deleterious DNVs, especially 
in chromatin modifiers required for H3K4/H3K27 me-
thylation and highly expressed genes during embryonic 
heart development. Only one gene, NAA15, harbors 
more than one de novo protein-altering variants in the 
data. This indicates that the pool of genes that con-
tribute to CHD through de novo coding variants is very 
large, similar to the genetic architecture of autism- 
spectrum disorder based on early exome sequencing 
studies [19–23]. As the statistical power for identification 
of individual risk genes is severely limited by the small 
sample size, they introduced a heuristic method to im-
prove signal-to-noise ratio of putative disease-causing 
DNVs based on filters at variant and gene levels. First, 
select likely deleterious DNVs by filtering based on 
functional annotations and conservation; second, select 
genes that are likely to play a role in CHD based on 
high-expression rank in developing mouse heart (em-
bryonic day 14.5). With this method, they showed CHD 
cases were significantly enriched of deleterious DNVs in 
biologically plausible genes compared with controls. 
This paradigm has been used since then in later studies 
in CHD and other birth defects [24–28]. 

In Homsy et al., 2015 [9••], the same trend was ob-
served in a larger cohort of 1213 trios, where they 
identified an excess of protein-damaging DNVs, espe-
cially in genes highly expressed in the developing heart 
and brain that are involved in morphogenesis, chromatin 
modification, and transcriptional regulation. The study 
introduced a new method to improve power by com-
paring observed data in cases with what is expected by 
chance based on a background mutation model [29]. 
The background mutation model, first introduced in 
Samocha et al., 2014 [30], estimates context-specific 
mutation rate based on large-scale human genome se-
quencing data. In a transcript (of a gene), the aggregated 
mutation rate of each functional class of variants (e.g., 

Figure 1  

Current Opinion in Genetics and Development

Illustration of genetic architectures of CHD by two types of mountains. 
The height of the mountain represents disease liability. Left, the Denali 
model, disease liability is dominated by highly penetrant monogenic 
mutations. Right, the Everest model, disease liability is contributed by 
multiple genetic factors, including the high plateau (aggregated risk 
from common variants with small effect) and peaks (rare or DNVs with 
large effect). Horizontal dashed line indicates liability threshold for 
clinical manifestation of CHD. The aggregated risk from common 
variants in some individuals may be large enough to reach liability 
threshold. The illustration is adapted from lastfrontier.org.   

2 Molecular and genetic basis of disease  
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protein-truncating variants, missense variants, and sy-
nonymous variants) can be estimated by adding up all 
possible point mutation rates of that class. Missense 
variants can be further filtered as damage missense (“D- 
mis”) variants by various prediction tools (REVEL [31], 
CADD [32], MPC [33], metaSVM [34], etc). Using 
background mutation rate to calculate expectation under 
the null is equivalent to having infinitely large number 
of controls. With the background model, the number of 
DNVs in each gene follows a Poisson distribution 

H m Poisson: ~ ( )0 (1) 

where m is the observed number of DNVs of a certain 
type (e.g., missense variants) in N individuals, is the 
mean of the distribution, estimated by the number of 
individuals (N ) multiplied by the background mutation 
rate of the type of the variants in the gene. Under the 
null, one can test the significance of DNV burden of a 
gene by a Poisson exact test. It is applicable to both single 
genes and gene sets. A limitation of such method comes 
from the uncertainty of estimated background mutation 
rate because the model cannot completely account for 
the variation of mutation rate along the genome [30,35], 
especially short insertions and deletions. This issue can 
be partly improved by modeling the mutation rate as a 
random variable with mean and variance. While a 
Poisson test only accounts for the mean of this random 
variable, a Gamma-Poisson test (equivalent to negative 
binomial) can account for both. 

Homsy et al., 2015 [36] reported three genes (PTPN11, 
KMT2D, and RBFOX2) with genome-wide significance 
(Bonferroni correction) and additional 18 genes with ≥2 
damaging DNVs. While it is challenging to establish the 
association of these 18 genes individually by DNV data, 
simulation analysis showed that conditioned on the total 
number of damaging DNVs, the number of genes with 
multiple damaging DNVs by chance is far smaller, in-
dicating that most of these 18 genes are likely to be true 
risk genes. This important insight is the foundation of 
formal methods to estimate FDR through Bayesian ap-
proaches. 

Indeed, in a more recent study of 1891 CHD cases by 
Sifrim et al., 2016 [11], the authors used a hierarchical 
Bayesian model, TADA [21], to estimate FDR by ex-
plicitly modeling the alternative hypothesis and the 
priors. Just like Poisson tests, TADA assumes that the 
observed number of DNVs in each gene follows a 
Poisson distribution (Equation (1)). 

Under the null hypothesis, can be estimated by 
background mutation rate using the same method based 
on Samocha 2014 model. Under alternative hypothesis, 
TADA specifies two parameters: the prior probability of 
being a risk gene ( ) and the relative risk ( ) of a class of 

variants. Given , the observed number of DNVs follows 
Poisson distribution with mean of * : 

H m Poisson| : ~ ( * )1 (2)  

is treated as a random variable with prior distribution. 
The Bayes factor is calculated as 

=BF
p m

p m
d

( * )
( ) (3)  

The posterior odds (PO) of two hypotheses can be cal-
culated as 

= =PO
P m H

P m H
BF

( | )

( | ) 1
1

0 (4)  

TADA methods estimate the hyperparameters ( , ) by 
fitting the overall model with overall enrichment of 
DNVs and how DNVs are distributed across 
genes [21,37]. 

Finally, one can estimate posterior probability of asso-
ciation (PPA) from posterior odds, and then a Bayesian 
FDR by false-discovery proportion implied by PPA. A 
candidate gene can be nominated if its FDR is below a 
threshold. From this paradigm, they identified 16 genes 
with FDR below 0.01. This approach has been used 
since then in many other studies. This study also in-
troduced a new method for analyzing the missense var-
iants by clustering of mutations within genes, where 
they computed the geometric mean of distances be-
tween each pair of mutations along the protein sequence 
and compare with random simulations. This method can 
increase the power when integrated with the mutation- 
burden test. 

Analysis of rare inherited variants 
Rare inherited variants are variants in offsprings that 
inherited from parents with low minor allele frequency 
in the population, for example, less than 1%. As DNVs 
only account for ~30% of PAR of syndromic cases 
and <  10% of isolated cases, it is important to investigate 
rare variants in both dominant and recessive models to 
search for additional genetic factors. 

Jin et al., 2017 [38] developed a rigorous method to 
quantify the contribution of recessive genotypes of rare 
variants. As in previous analysis with implied dominant 
model, they only considered damaging coding (LoF, D- 
Mis, indels) variants. Under outbred population, the 
observed recessive genotypes should be proportional to 
the square of the cumulative frequency of damaging 
alleles, while under inbred population, it instead in-
creases linearly with this number. This could be re-
presented as a polynomial regression function of gene 
mutability 

4 Molecular and genetic basis of disease  
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= + + +Number of RGs mutability mutability* *0 1 2
2

(5)  

They tested the enrichment of observed recessive gen-
otypes with a one-tailed binomial test in a specific gene 
or gene set in cases. This frequentist approach provides 
additional statistical significance in identifying CHD risk 
genes. Through this approach, they found enrichment of 
a single GDF1 founder mutation in Ashkenazim popu-
lation. They also identified FLT4 with significantly en-
riched rare heterozygous LoF variants in the patients 
with TOF, indicating its dominant genetic role to this 
subtype of CHD. FLT4, together with NOTCH1, was 
further confirmed to be the most frequent site of genetic 
variants that predisposed to TOF [39]. 

Watkins et al., 2019 [40••], analyzed the same exome 
sequencing dataset with a different approach, VAAST  
[41,42]. VAAST is a gene-burden test that ranks the 
probability being a risk gene or gene set based on em-
pirically calibrated rarity of genotypes. VAAST approach 
is especially relevant for assessing the impact of com-
pound heterozygous genotypes. Using VAAST, they find 
that cilia and cilia-related genes are enriched for rare, 
damaging recessive variants, suggesting their recessive 
homozygous and compound heterozygous leading 
to CHD. 

Analysis of copy number variants 
Pathogenic copy number variants (CNVs) were esti-
mated to be presented in 4–14% of patients with isolated 
CHD and 15–20% of patients with CHD and extra-
cardiac anomalies [43]. The basic model of analyzing 
CNVs is similar to small rare variants, that is, to test 
whether CNVs are enriched in cases compared with 
controls in genomic intervals such as genes. Audain 
et al., 2021 [44] reported an integrated analysis of CNVs 
and DNVs. The study assembled CNV data of 7958 
cases and 14 082 controls, mostly from public re-
positories, and coding DNVs of 2489 cases from two 
recent publications [11,38]. They performed enrichment 
test on rare CNVs and DNVs separately and combined 
p-values using Fisher’s method. The study identified 21 
genes with significant association with loss-of-function 
point mutations or deletions. 

Analysis of de novo noncoding variants 
Most of CHD cases, even syndromic ones, do not carry 
damaging DNVs in coding regions or pathogenic CNVs. 
This motivated the investigation of de novo noncoding 
variants in Richter et al., 2020 [45••]. Unlike protein- 
altering DNVs, there is no significant overall enrichment 
of de novo noncoding variants in cases. To quantify how 
much de novo noncoding variants contribute to CHD 
risk, it is crucial to preselect variants that may have a 
functional impact. This requires a systematic integration 

of functional genomics data. In Richter et al., 2020  
[45••], they introduced HeartENN, a deep learning- 
based epigenomic-effect model based on DeepSEA [46]. 
HeartENN uses convolutional neural network archi-
tecture to predict the genome-wide features for human 
and mouse based on the heart-specific chromatin profile, 
including histone markers in promoter and enhancer 
regions. Noncoding variants were scored and filtered 
with HeartENN with optimal threshold, followed by 
case–control binomial tests. They observed a significant 
enrichment of noncoding variants with HeartENN score 
≥0.1 in 749 CHD trios compared with 1611 unaffected 
trios. In addition to transcriptional regulatory disruption, 
they also tested the enrichment of noncoding variants 
that may disrupt post-transcriptional regulation, through 
a combination of RNA-binding protein-binding sites and 
histone markers of transcribing gene body. To account 
for testing of many hypotheses among which many are 
correlated, they used a method described in Werling 
et al., 2018 [47] to estimate the effect number of in-
dependent tests by the number of eigen vectors that 
explains ≥99% of the variance of the correlations be-
tween features. This number is used to perform Bon-
ferroni correction of p-values of individual tests. Those 
tests provided additional evidence of disturbed post- 
transcriptional regulation machinery that may contribute 
to CHD. 

Analysis of common variants 
GWAS are designed to test the association of individual 
genetic variants across the genome with phenotypes. It 
has been widely used [48] in complex diseases and traits 
with variants that are common in the population, for 
example, allele frequency above 1. A recent GWAS 
study on CHD was performed on 4034 cases with CHD 
and 8486 healthy controls [17••]. They identified 20 
genome-wide significant SNPs with a wide range of ef-
fect size (odds ratio from 1.57 to 6.11). As expected, the 
effect size is negatively correlated with allele frequency. 
All the significant SNPs with odds ratio above 2 have 
allele frequency below 5%. Interestingly, all but one 
SNP are associated with specific CHD subtypes. Since 
the sample size of each subtype is still modest in the 
study, the statistical power of GWAS in CHD is limited. 
How to effectively identify genetic risk factors that are 
shared across subtypes and subtype-specific using the 
same dataset without incurring heavy multiple testing 
adjustment is an open statistical problem. 

Conclusions 
Recent studies on rare and common variants in CHD 
have significantly improved the understanding of the 
etiology and genetic architecture of CHD. Several ad-
vances in the statistical analysis and variant annotation 
tools, including applications of background mutation 
model (1213 trios, [9]••), Bayesian association methods 
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(1891 trios, [11]), recent missense pathogenicity predic-
tion tools, VAAST (2391 trios, Watkins et al., 2019  
[40••]), and HeartENN (749 probands and 1611 control 
trios, Richter et al., 2020 [45••]) have significantly in-
creased the statistical power. 

There are significant gaps in our understanding of 
human CHD genetics. The identified genetic risk fac-
tors only account for a minor fraction of population-at-
tributable risk, especially isolated CHD without 
additional congenital anomalies or neurodevelopmental 
disorders. Some risk genes are shared in across CHD 
subtypes, while others are specific to certain subtypes. 
Comprehensive identification of new risk genes by both 
rare and common variants is still a key to advance the 
field and provide the basis for improving understanding 
of developmental biology of CHD and long-term clinical 
outcomes. To improve statistical power, we need more 
international collaboration and effective data sharing. 
Furthermore, we need new statistical and computational 
methods that can take advantage of recent advances in 
machine learning, protein structure, and single-cell 
technologies. For example, modeling of single-cell ex-
pression and functional genomics data to infer regulatory 
networks during fetal heart development would be of 
great help for understanding the genetic architectures of 
CHD. Finally, accurate prediction of the pathogenicity 
and mode of action of missense variants is critically im-
portant to improve power of new gene discovery and 
clinical interpretation. Recent advances in machine- 
learning modeling of protein sequence and structure can 
improve our ability to make predictions of the functional 
and genetic impact of genetic variants. 

Conflict of interest 
None. 

Acknowledgments 
This work was supported by National Institutes of Health (NIH) grants 
R01GM120609 and U01HL153009. 

References and recommended reading 
Papers of particular interest, published within the period of review, have 
been highlighted as:  

•• of special interest  
•• of outstanding interest.  

1. Chin-Yee NJ, Costain G, Swaby JA, Silversides CK, Bassett AS: 
Reproductive fitness and genetic transmission of tetralogy of 
Fallot in the molecular age. Circ Cardiovasc Genet 2014, 
7:102-109. 

2. Tartaglia M, Mehler EL, Goldberg R, Zampino G, Brunner HG, 
Kremer H, van der Burgt I, Crosby AH, Ion A, Jeffery S, et al.: 
Mutations in PTPN11, encoding the protein tyrosine 
phosphatase SHP-2, cause Noonan syndrome. Nat Genet 2001, 
29:465-468. 

3. Tartaglia M, Kalidas K, Shaw A, Song X, Musat DL, van der Burgt I, 
Brunner HG, Bertola DR, Crosby A, Ion A, et al.: PTPN11 
mutations in Noonan syndrome: molecular spectrum, 

genotype-phenotype correlation, and phenotypic 
heterogeneity. Am J Hum Genet 2002, 70:1555-1563. 

4. Becker K, Hughes H, Howard K, Armstrong M, Roberts D, Lazda 
EJ, Short JP, Shaw A, Patton MA, Tartaglia M: Early fetal death 
associated with compound heterozygosity for Noonan 
syndrome-causative PTPN11 mutations. Am J Med Genet A 
2007, 143A:1249-1252. 

5. Bertola DR, Pereira AC, de Oliveira PS, Kim CA, Krieger JE: Clinical 
variability in a Noonan syndrome family with a new PTPN11 
gene mutation. Am J Med Genet A 2004, 130A:378-383. 

6. Binder G, Neuer K, Ranke MB, Wittekindt NE: PTPN11 mutations 
are associated with mild growth hormone resistance in 
individuals with Noonan syndrome. J Clin Endocrinol Metab 
2005, 90:5377-5381. 

7. Micale L, Augello B, Maffeo C, Selicorni A, Zucchetti F, Fusco C, De 
Nittis P, Pellico MT, Mandriani B, Fischetto R, et al.: Molecular 
analysis, pathogenic mechanisms, and readthrough therapy on 
a large cohort of Kabuki syndrome patients. Hum Mutat 2014, 
35:841-850. 

8. Van Laarhoven PM, Neitzel LR, Quintana AM, Geiger EA, Zackai 
EH, Clouthier DE, Artinger KB, Ming JE, Shaikh TH: Kabuki 
syndrome genes KMT2D and KDM6A: functional analyses 
demonstrate critical roles in craniofacial, heart and brain 
development. Hum Mol Genet 2015, 24:4443-4453. 

9.
••

Homsy J, Zaidi S, Shen Y, Ware JS, Samocha KE, Karczewski KJ, 
DePalma SR, McKean D, Wakimoto H, Gorham J, et al.: De novo 
mutations in congenital heart disease with 
neurodevelopmental and other congenital anomalies. Science 
2015, 350:1262-1266. 

In this study, the authors showed that protein-damaging DNVs are en-
riched in CHD cases, especially in genes highly expressed during em-
broynic heart development that involved in morphogenesis, chromatin 
modification, and transcriptional regulation. They identified three genes, 
PTPN11, KMT2D and RBFOX2, that are associated with CHD risk by 
DNVs with genome-wide significance. Furthermore, using permuations, 
they showed that most of the other genes with multiple protein-dama-
ging DNVs are also CHD risk genes, even though there is a lack of 
statistical evidence to identify risk genes individually among these 
genes. 

10.
••

Jin SC, Homsy J, Zaidi S, Lu Q, Morton S, DePalma SR, Zeng X, Qi 
H, Chang W, Sierant MC, et al.: Contribution of rare inherited and 
de novo variants in 2871 congenital heart disease probands. 
Nat Genet 2017, 49:1593-1601. 

The authors systematic analyzed the impact of rare inherited recessive 
and dominant variants and of DNMs via exome sequencing on 2871 
CHD cases. They identified GDF1, MYH6, FLT4 that are associated with 
severe CHD in Ashkenazim, Shone complex and TOF, respectively. 
They developed a method to model rare recessive genotypes and 
quantified the contribution of recessive genotypes to CHD. 

11.
•

Sifrim A, Hitz MP, Wilsdon A, Breckpot J, Turki SH, Thienpont B, 
McRae J, Fitzgerald TW, Singh T, Swaminathan GJ, et al.: Distinct 
genetic architectures for syndromic and nonsyndromic 
congenital heart defects identified by exome sequencing. Nat 
Genet 2016, 48:1060-1065. 

In this study, the authors exome sequenced 1891 probands, including 
610 syndromic CHD and 1281 nonsyndromic CHD. They confirmed a 
significant enrichment of de novo PTVs in syndromic cases, while sig-
nificant enrichment of PTVs inherited from unaffected parents in non- 
syndromic cases. They identified three genome-wide significant genes 
that contribute to syndromic CHD by de novo mutations, CHD4, CDK13 
and PRKD1. Additionally, they applied a Bayesian association method, 
TADA, to identify additional candidate risk genes with calibrated FDR. 

12.
•

McBride KL, Pignatelli R, Lewin M, Ho T, Fernbach S, Menesses A, 
Lam W, Leal SM, Kaplan N, Schliekelman P, et al.: Inheritance 
analysis of congenital left ventricular outflow tract obstruction 
malformations: segregation, multiplex relative risk, and 
heritability. Am J Med Genet A 2005, 134A:180-186. 

The authors analyzed data from 124 families with left ventricular outflow 
tract (LVOTO) malformations. They estimated a heritability of 0.71-0.90 
and a relative risk of 36.9 for first-degree relatives of affected individuals. 
The results support a complex pattern of inheritance, likely oligogenic, 
of LVOTO. 

13.
•

Pierpont ME, Brueckner M, Chung WK, Garg V, Lacro RV, McGuire 
AL, Mital S, Priest JR, Pu WT, Roberts A, et al.: Genetic basis for 

6 Molecular and genetic basis of disease  

www.sciencedirect.com Current Opinion in Genetics & Development 76( 2022) 101967 

http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref1
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref1
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref1
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref1
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref2
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref2
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref2
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref2
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref2
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref3
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref3
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref3
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref3
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref3
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref4
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref4
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref4
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref4
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref4
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref5
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref5
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref5
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref6
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref6
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref6
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref6
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref7
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref7
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref7
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref7
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref7
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref8
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref8
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref8
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref8
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref8
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref9
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref9
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref9
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref9
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref9
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref10
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref10
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref10
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref10
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref11
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref11
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref11
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref11
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref11
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref12
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref12
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref12
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref12
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref12
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref13
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref13


congenital heart disease: revisited: a scientific statement from 
the American Heart Association. Circulation 2018, 
138:e653-e711. 

The review provided an overview of epidemiology and genetic basis of 
CHD. It summarized several studies of CHD subtypes with estimated 
heritability in the range of 70% to 90%, supporting strong genetic 
contribution to those subtypes. 

14. Cripe L, Andelfinger G, Martin LJ, Shooner K, Benson DW: 
Bicuspid aortic valve is heritable. J Am Coll Cardiol 2004, 
44:138-143. 

15. Hinton RB Jr., Martin LJ, Tabangin ME, Mazwi ML, Cripe LH, 
Benson DW: Hypoplastic left heart syndrome is heritable. J Am 
Coll Cardiol 2007, 50:1590-1595. 

16. Nogee JM, Jay PY: The heritable basis of congenital heart 
disease: past, present, and future. Circ Cardiovasc Genet 2016, 
9:315-317. 

17.
••

Lahm H, Jia M, Dressen M, Wirth F, Puluca N, Gilsbach R, Keavney 
BD, Cleuziou J, Beck N, Bondareva O, et al.: Congenital heart 
disease risk loci identified by genome-wide association study 
in European patients. J Clin Invest (2) 2021, 131:e141837. 

The authors performed a genome-wide association study (GWAS) of 
4034 patients with CHD and 8486 healthy controls. They identified 20 
SNPs reached genome-wide significance in various subtypes of CHD. 
These SNPs are close to MACROD2, GOSR2, WNT3, and MSX1. 
Further single cell RNA-Seq analyses provided strong functional evi-
dence that those genes play important roles during embryonic devel-
opment of the human heart. 

18. Zaidi S, Choi M, Wakimoto H, Ma L, Jiang J, Overton JD, Romano- 
Adesman A, Bjornson RD, Breitbart RE, Brown KK, et al.: De novo 
mutations in histone-modifying genes in congenital heart 
disease. Nature 2013, 498:220-223. 

19. O'Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, 
Levy R, Ko A, Lee C, Smith JD, et al.: Sporadic autism exomes 
reveal a highly interconnected protein network of de novo 
mutations. Nature 2012, 485:246-250. 

20. Neale BM, Kou Y, Liu L, Ma'ayan A, Samocha KE, Sabo A, Lin CF, 
Stevens C, Wang LS, Makarov V, et al.: Patterns and rates of 
exonic de novo mutations in autism spectrum disorders. Nature 
2012, 485:242-245. 

21. He X, Sanders SJ, Liu L, De Rubeis S, Lim ET, Sutcliffe JS, 
Schellenberg GD, Gibbs RA, Daly MJ, Buxbaum JD, et al.: 
Integrated model of de novo and inherited genetic variants 
yields greater power to identify risk genes. PLoS Genet 2013, 
9:e1003671. 

22. Iossifov I, O'Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, 
Stessman HA, Witherspoon KT, Vives L, Patterson KE, et al.: The 
contribution of de novo coding mutations to autism spectrum 
disorder. Nature 2014, 515:216-221. 

23. De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek 
AE, Kou Y, Liu L, Fromer M, Walker S, et al.: Synaptic, 
transcriptional and chromatin genes disrupted in autism. 
Nature 2014, 515:209-215. 

24. Qi H, Yu L, Zhou X, Wynn J, Zhao H, Guo Y, Zhu N, Kitaygorodsky 
A, Hernan R, Aspelund G, et al.: De novo variants in congenital 
diaphragmatic hernia identify MYRF as a new syndrome and 
reveal genetic overlaps with other developmental disorders. 
PLoS Genet 2018, 14:e1007822. 

25. Wang J, Ahimaz PR, Hashemifar S, Khlevner J, Picoraro JA, 
Middlesworth W, Elfiky MM, Que J, Shen Y, Chung WK: Novel 
candidate genes in esophageal atresia/tracheoesophageal 
fistula identified by exome sequencing. Eur J Hum Genet 2021, 
29:122-130. 

26. Qiao L, Xu L, Yu L, Wynn J, Hernan R, Zhou X, Farkouh-Karoleski C, 
Krishnan US, Khlevner J, De A, et al.: Rare and de novo variants in 
827 congenital diaphragmatic hernia probands implicate 
LONP1 as candidate risk gene. Am J Hum Genet 2021, 
108:1964-1980. 

27. Zhong G, Ahimaz P, Edwards NA, Hagen JJ, Faure C, Kingma P, 
Middlesworth W, Khlevner J, Fiky ME, Schindel D, et al.: 
Identification and validation of novel candidate risk genes in 
endocytic vesicular trafficking associated with esophageal 

atresia and tracheoesophageal fistulas. HGG Adv. (3) 2022, 
3:100107. 

28. Bishop MR, Diaz Perez KK, Sun M, Ho S, Chopra P, 
Mukhopadhyay N, Hetmanski JB, Taub MA, Moreno-Uribe LM, 
Valencia-Ramirez LC, et al.: Genome-wide enrichment of de 
novo coding mutations in orofacial cleft trios. Am J Hum Genet 
2020, 107:124-136. 

29. Ware JS, Samocha KE, Homsy J, Daly MJ: Interpreting de novo 
variation in human disease using denovolyzeR. Curr Protoc Hum 
Genet 2015, 87:7.25.1-7.25.15. 

30. Samocha KE, Robinson EB, Sanders SJ, Stevens C, Sabo A, 
McGrath LM, Kosmicki JA, Rehnstrom K, Mallick S, Kirby A, et al.: 
A framework for the interpretation of de novo mutation in 
human disease. Nat Genet 2014, 46:944-950. 

31. Ioannidis NM, Rothstein JH, Pejaver V, Middha S, McDonnell SK, 
Baheti S, Musolf A, Li Q, Holzinger E, Karyadi D, et al.: REVEL: an 
ensemble method for predicting the pathogenicity of rare 
missense variants. Am J Hum Genet 2016, 99:877-885. 

32. Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M: CADD: 
predicting the deleteriousness of variants throughout the 
human genome. Nucleic Acids Res 2019, 47:D886-D894. 

33. Evans P, Wu C, Lindy A, McKnight DA, Lebo M, Sarmady M, Abou, 
Tayoun AN: Genetic variant pathogenicity prediction trained 
using disease-specific clinical sequencing data sets. Genome 
Res 2019, 29:1144-1151. 

34. Dong C, Wei P, Jian X, Gibbs R, Boerwinkle E, Wang K, Liu X: 
Comparison and integration of deleteriousness prediction 
methods for nonsynonymous SNVs in whole exome 
sequencing studies. Hum Mol Genet 2015, 24:2125-2137. 

35. Carlson J, Locke AE, Flickinger M, Zawistowski M, Levy S, Myers 
RM, Boehnke M, Kang HM, Scott LJ, Li JZ, et al.: Extremely rare 
variants reveal patterns of germline mutation rate 
heterogeneity in humans. Nat Commun 2018, 9:3753. 

36. Homsy J, Zaidi S, Shen Y, Ware JS, Samocha KE, Karczewski KJ, 
DePalma SR, McKean D, Wakimoto H, Gorham J, et al.: De novo 
mutations in congenital heart disease with 
neurodevelopmental and other congenital anomalies. Science 
2015, 350:1262-1266. 

37. Nguyen HT, Bryois J, Kim A, Dobbyn A, Huckins LM, Munoz- 
Manchado AB, Ruderfer DM, Genovese G, Fromer M, Xu X, et al.: 
Integrated Bayesian analysis of rare exonic variants to identify 
risk genes for schizophrenia and neurodevelopmental 
disorders. Genome Med 2017, 9:114. 

38. Jin SC, Homsy J, Zaidi S, Lu Q, Morton S, DePalma SR, Zeng X, Qi 
H, Chang W, Sierant MC, et al.: Contribution of rare inherited and 
de novo variants in 2871 congenital heart disease probands. 
Nat Genet 2017, 49:1593-1601. 

39. Page DJ, Miossec MJ, Williams SG, Monaghan RM, Fotiou E, 
Cordell HJ, Sutcliffe L, Topf A, Bourgey M, Bourque G, et al.: Whole 
exome sequencing reveals the major genetic contributors to 
nonsyndromic tetralogy of fallot. Circ Res 2019, 124:553-563. 

40.
••

Watkins WS, Hernandez EJ, Wesolowski S, Bisgrove BW, 
Sunderland RT, Lin E, Lemmon G, Demarest BL, Miller TA, 
Bernstein D, et al.: De novo and recessive forms of congenital 
heart disease have distinct genetic and phenotypic 
landscapes. Nat Commun 2019, 10:4722. 

The authors analyzed whole exome sequencing (WES) data of 2391 
trios. They used VAAST to prioritize disease associated genotypes. They 
identified 229 damaged cilia-related genes with enriched recessive 
genotypes while depleted DNVs. They observed opposite trend for 
chromatin-modifying genes. Their analysis revealed that dominant and 
recessive CHD genes are associated with different functions. 

41. Yandell M, Huff C, Hu H, Singleton M, Moore B, Xing J, Jorde LB, 
Reese MG: A probabilistic disease-gene finder for personal 
genomes. Genome Res 2011, 21:1529-1542. 

42. Hu H, Huff CD, Moore B, Flygare S, Reese MG, Yandell M: VAAST 
2.0: improved variant classification and disease-gene 
identification using a conservation-controlled amino acid 
substitution matrix. Genet Epidemiol 2013, 37:622-634. 

Statistical genetics of CHD Zhong and Shen 7 

www.sciencedirect.com Current Opinion in Genetics & Development 76( 2022) 101967 

http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref13
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref13
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref13
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref14
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref14
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref14
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref15
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref15
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref15
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref16
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref16
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref16
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref17
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref17
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref17
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref17
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref18
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref18
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref18
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref18
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref19
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref19
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref19
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref19
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref20
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref20
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref20
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref20
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref21
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref21
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref21
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref21
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref21
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref22
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref22
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref22
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref22
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref23
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref23
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref23
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref23
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref24
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref24
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref24
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref24
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref24
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref25
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref25
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref25
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref25
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref25
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref26
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref26
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref26
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref26
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref26
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref27
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref27
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref27
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref27
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref27
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref27
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref28
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref28
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref28
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref28
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref28
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref29
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref29
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref29
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref30
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref30
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref30
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref30
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref31
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref31
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref31
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref31
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref32
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref32
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref32
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref33
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref33
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref33
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref33
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref34
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref34
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref34
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref34
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref35
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref35
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref35
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref35
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref36
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref36
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref36
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref36
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref36
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref37
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref37
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref37
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref37
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref37
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref38
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref38
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref38
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref38
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref39
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref39
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref39
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref39
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref40
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref40
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref40
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref40
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref40
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref41
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref41
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref41
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref42
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref42
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref42
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref42


43. Andersen TA, Troelsen Kde L, Larsen LA: Of mice and men: 
molecular genetics of congenital heart disease. Cell Mol Life Sci 
2014, 71:1327-1352. 

44. Audain E, Wilsdon A, Breckpot J, Izarzugaza JMG, Fitzgerald TW, 
Kahlert AK, Sifrim A, Wunnemann F, Perez-Riverol Y, Abdul-Khaliq 
H, et al.: Integrative analysis of genomic variants reveals new 
associations of candidate haploinsufficient genes with 
congenital heart disease. PLoS Genet 2021, 17:e1009679. 

45.
••

Richter F, Morton SU, Kim SW, Kitaygorodsky A, Wasson LK, Chen 
KM, Zhou J, Qi H, Patel N, DePalma SR, et al.: Genomic analyses 
implicate noncoding de novo variants in congenital heart 
disease. Nat Genet 2020, 52:769-777. 

The authors compared genome sequences from 749 CHD probands 
and their parents with those from 1611 unaffected trios. They develped a 
neural network based non-coding variant transcriptional impact pre-
diction method and identified enrichment of damaing non-coding DNVs 

in cases compared to controls. Overall, their findings implicated en-
richment of potentially disruptive regulatory noncoding DNVs in a frac-
tion of CHD, and highlighted the potential of WGS to more fully elucidate 
the genetic architecture of CHD. 

46. Zhou J, Troyanskaya OG: Predicting effects of noncoding 
variants with deep learning-based sequence model. Nat 
Methods 2015, 12:931-934. 

47. Werling DM, Brand H, An JY, Stone MR, Zhu L, Glessner JT, Collins 
RL, Dong S, Layer RM, Markenscoff-Papadimitriou E, et al.: An 
analytical framework for whole-genome sequence association 
studies and its implications for autism spectrum disorder. Nat 
Genet 2018, 50:727-736. 

48. Tam V, Patel N, Turcotte M, Bosse Y, Pare G, Meyre D: Benefits 
and limitations of genome-wide association studies. Nat Rev 
Genet 2019, 20:467-484.  

8 Molecular and genetic basis of disease  

www.sciencedirect.com Current Opinion in Genetics & Development 76( 2022) 101967 

http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref43
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref43
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref43
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref44
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref44
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref44
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref44
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref44
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref45
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref45
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref45
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref45
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref46
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref46
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref46
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref47
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref47
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref47
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref47
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref47
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref48
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref48
http://refhub.elsevier.com/S0959-437X(22)00076-4/sbref48

	Statistical models of the genetic etiology of congenital heart disease
	Introduction
	Main statistical models of recent genetic association studies
	Analysis of de novo-coding variants
	Analysis of rare inherited variants
	Analysis of copy number variants
	Analysis of de novo noncoding variants
	Analysis of common variants
	Conclusions
	Conflict of interest
	Acknowledgments
	References and recommended reading




