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A probabilistic graphical model for
estimating selection coefficients of
nonsynonymous variants from human
population sequence data

Yige Zhao 1,2, Tian Lan1, Guojie Zhong1,2, Jake Hagen1,3, Hongbing Pan4,
Wendy K. Chung 3 & Yufeng Shen 1,4,5

Accurately predicting the effect ofmissense variants is important in discovering
disease risk genes and clinical genetic diagnostics. Commonly used computa-
tional methods predict pathogenicity, which does not capture the quantitative
impact on fitness in humans. We develop a method, MisFit, to estimate mis-
sense fitness effect using a graphical model. MisFit jointly models the effect at a
molecular level (d) and a population level (selection coefficient, s), assuming
that in the same gene, missense variants with similar d have similar s. We train it
by maximizing probability of observed allele counts in 236,017 individuals of
European ancestry. We show that s is informative in predicting allele frequency
across ancestries and consistent with the fraction of de novo mutations in sites
under strong selection. Further, s outperforms previousmethods in prioritizing
de novo missense variants in individuals with neurodevelopmental disorders.
In conclusion, MisFit accurately predicts s and yields new insights from geno-
mic data.

Missense variants, which cause single amino acid changes in proteins,
are themost common type of variant in protein-coding regions. They are
major contributors to genetic risk of developmental disorders1–3, cancer,
and other diseases. However, as missense variants have a potentially
broad range of functional impact but generally a low chance of recur-
rence,mostmissense variants identified in cohorts or clinical sequencing
have uncertain effect4–9. Deep mutational scanning (DMS) assays can
assist with interpretation of missense variants10–31, but there is limited
scalability as different proteins have different andmultifaceted functions
that require different functional assays. Therefore, computationally
predicting the effect of missense variants is important to support the
scale required for novel disease gene discovery and interpretation.

Although many methods have been developed to predict variant
effects, there is a long-standing ambiguity of the concepts used to

describe variant effect. We adopt a set of definitions32 to explain the
related causes and consequences specifically for different aspects of
missense variant effect (Supplementary Fig. 1). At the molecular level,
we define the effect (d) as change of abundance, localization, or
function of a protein. At organism level, a damaging variant (with lar-
ger d) is defined as pathogenic if it increases the risk of diseases or
conditions. Pathogenic variants are often the focus in human genetic
studies and clinical testing. Databases like ClinVar9 and HGMD33 have
curated pathogenic variants, which are used as the training labels in
supervised methods, such as CADD34, REVEL35, M-CAP36, gMVP37,
VEST38, MetaSVM39, MVP40 and MPC41. Although these methods have
proven helpful, they usually suffer from inconsistent performance
across genes, since most of the curated pathogenic variants are
from only a few thousand genes that are well-established as
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disease-associated. We suggest that predicted pathogenicity is an
uncertain aggregation of variant functional effect, gene risk, and even
disease properties. Our knowledge of gene to disease association is
incomplete and in fact, identification of new associations is a primary
goal of predicting variant effect in genetic studies. Therefore, we seek
other metrics for describing missense effects in prediction that can be
quantified without knowing gene-disease associations.

One such metric is selection coefficient (s) which quantifies the
fitness effect of variants in a population. A pathogenic variant is usually
subject to negative selection in human populations. Although s of a
variant depends on the penetrance of the variant to various conditions
and the total fitness effect of the conditions, the consequence of s,
especially of heterozygotes, can be observed in allele frequencies in
human populations42. It is therefore theoretically feasible to estimate s
without knowing any traits with which the variant is associated.
Biobank-scale genomic sequencing efforts4–8 have generated a large
number of human population genome sequences that enable estima-
tion on heterozygous selection coefficient of gene-aggregated protein
truncating variants (PTVs)43–46. However, estimation for missense var-
iants is muchmore challenging because we cannot reasonably assume
all or most of missense variants in one gene have the same selection
coefficient. Existing prediction of selection for individual variants47

does not directly utilize protein context, and is still based on a very
small sample size.

Here we describe a new method, MisFit, to jointly predict mole-
cular effect and human fitness effect of missense variants through a
probabilistic graphical model. We aimed to estimate selection coeffi-
cient for variants under moderate to strong negative selection. In the
model, the molecular effect depends on amino acid change in the
protein context, and heterozygous selection coefficient depends on
molecular effect of the variant and gene-level importance in selection
in humanpopulations.We trained themodel usingpopulationgenome
data without pathogenicity labels and evaluated it using deep muta-
tional scan readout data and de novo and inherited variants in devel-
opmental disorders.

Results
Using Poisson-Inverse-Gaussian distribution to model allele
counts in human populations
The distributionof allele counts (m) in population sequencing samples
is determined by heterozygous selection coefficient (s), mutation rate
(ν) and number of chromosomes (n). To infer s, we first need tomodel
the probability of observed allele counts p mjs;ν,nð Þ. Allele frequency q
of a variant at equilibrium state equals q= ν

s, and therefore the allele
count m follows a Poisson distribution with an expectation nν

s . When
taking genetic drift into account, the distribution has strong over-
dispersion. Nei’s model48 describes allele count as a Negative Binomial
distributionwith an additional parameter, effective population sizeNe.
However, as there was exponential growth in recent generations49,50,
Ne is not a constant, and there is no closed formtodescribep mjs;ν,nð Þ.
Here, we used a long-tailed distribution, Inverse-Gaussian (IG) dis-
tribution, to approximate the distribution of q, which results in a
Poisson-Inverse-Gaussian (PIG) distribution of m. The parameters
associated with the PIG distribution are functions of s, ν,n, which are
optimized prior toMisFit training steps by simulated allele frequencies
givendensegrids of s, ν and European effectivepopulation size history
(Methods). We are mainly interested in those rare variants with rela-
tively large s; therefore, we chose to optimize the distribution for the
recent exponential population growth. In this way, we were able to
easily obtain a tractable gradient to s with a time complexity inde-
pendent to n.

To investigate how to approximate allele frequencydistribution in
a finite and expanding population, we performed a simulation based
on a demographic history model of European population49. Given ν

and s, we sampled each generation by a Wright-Fisher process

(Methods).We set the final effective population size to 1.5million, as it
best fits the distribution of observed sample allele counts of rare
synonymousC-to-T variants inmethylatedCpG siteswith high roulette
mutation rate (ν > 10�7 per generation) (Supplementary Fig. 2). This
final population size is smaller than recentwork45,46 (5million), which is
optimized for all variants with gnomAD mutation rate (with an lower
average ν � 6× 10�9).

We fitted the PIG model parameters (Supplementary Fig. 3)
based on simulated variants under different settings of
ν 2 ½10�9, 3 × 10�7�, s 2 ½10�6, 1�. When s is small, random drift makes
the distribution of allele counts more resemble a Negative Binomial
distributionwith smallNe.When s is large, the distribution is closer to a
Poisson distribution, as these variants are likely to emerge recently
when the effective population size is large (Fig. 1a, b). The PIG model
fits the simulated results better than other simple distribution models
in all ranges (Supplementary Fig. 4).

Feasibility of estimating selection coefficient for a group of
variants
Given the generally low mutation rate at 10�8, the highest probability
usually lies at 0 count regardless of s (Supplementary Fig. 4), so it is
nearly impossible to precisely estimate s for individual single nucleo-
tide variants only using allele counts. We therefore investigated the
feasibility of estimating s for a group of variants with similar s. We
aggregated certain numbers of sites simulated from the same s as a
group (Fig. 1c). We investigated whether the maximum-likelihood-
estimation (MLE) for the whole group based on the PIG model is
consistent with the simulation condition.

For deleterious variants of s >0:01 with high mutation rate, the
accuracy is high. More variants to aggregate and higher mutation rate
always helps with better estimation. The PIG model does not provide
good performance for s < 10�4, because randomly including or
excluding a common variant in the group can significantly change the
joint likelihood. Notably, increasing sample size in a single population
only helps with variants under strong selection (s >0:01) (Fig. 1c,
Supplementary Fig. 5). The over-dispersion of allele counts for milder
variants mostly comes from the uncertainty of allele frequency (the
long-tailed distribution of q) due to genetic drift, rather than from
sampling (the Poisson distribution given nq). Adding samples from
another population improves accuracy more than from the same
population. Based on the results, we implicitly groupmissense variants
by the degree of damage (d) in the same gene in the MisFit model.

MisFit model structure and training process
We describe the architecture of MisFit in Fig. 2. The degree of damage
(d) for each single amino acid substitution depends on the protein
sequence and structure context. Here we used the embeddings (x)
from the last layer in the masked protein language model, ESM-2
(650M)51 to capture the protein sequence and structure context. We
added additional transformer blocks and fully-connected dense layers
to generate a distribution of d (Supplementary Fig. 6b). Rescaling and
normalization of d by a gene-level, species-averaged selection strength
gives out probabilities of each amino acid at the position. The het-
erozygous selection coefficient (s) depends on d and the gene-level
selection strength in the human population. Here wemodeled s in the
logit scale as linear to d. We set a global prior for the maximum mis-
sense selection coefficient for each gene (sgene, the value of s when d
equals 1). (Methods). Finally, probability of generating allele count n
given s is given by the PIG model as previously described.

In the first stage, we trained the model to estimate parameters in
transformer and dense layers (denoted as NN1 in Methods), to max-
imize the log likelihood with allele counts, amino acid in
orthologues52,53, and ESM-2 zero-shot prediction. In other words, we
attempt to approximate p djxð Þ bymaximizing pðmjx, ν,nÞ, as this gives
out estimation of d across genes. During this training stage all possible
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missense SNVs in 18,708 genes were used, although for most epochs,
only a subset of 4073 constrained genes (missense z score > 2 or
gnomAD6,7 pLI > 0.5) well covered with both mammal sequence
alignment and human population sequence were included, because
damaging variants in these genes are expected to be under relatively
strong selection, and thus the difference in molecular effect can result
in a broad range of selection coefficient for training. Allele counts in
236,017 samples are used in training, including 145,103 UKBB8 unre-
lated individuals of European ancestry and 90,914 gnomAD7 indivi-
duals ofNon-Finnish European ancestry. Finally, sgene for all geneswere
updated by maximum a posteriori (MAP).

In the second stage, with the estimated d and sgene, we performed
variational inference to approximate the posterior distribution of s for
each missense SNV. During this stage, s is a hidden variable while its
prior is regarded as known with the optimized NN1, and thus the
posterior distribution pðsjm; x, ν,nÞ is determined but with no simple
analytical form. Sampling-based methods are a solution but time-
consuming considering the amount of individual missense variants.
Therefore, we treat posterior s as functions of d and population data,
which ismodeled by another dense neural network (denoted asNN2 in
Methods) to enable efficient variational inference in one forward-pass.
(Supplementary Fig. 6b, Methods)

Comparison of gene-level constraint
MisFit-estimated sgene quantifies gene-level selection strength on mis-
sense variants. Commonly used metrics for such information include
gnomADmissense z score and o/e. Though sgene for each gene generally
correlates well with both metrics (Supplementary Fig. 7), they represent
different aspects. Missense z score is effectively the significance level
assuming a Poisson distribution from the expected number of variants.
Thus, when a gene is short, missense z score tends to have a small
absolute value. sgene and o/e directly represent the degree of constraint,
although the uncertainty for short genes might be large.

Previous studies44–46 estimated s for protein truncating variants
(PTVs) in each gene, assuming PTVs in a gene have the same s. We
compared sgene with a sampling-basedmethod45 for PTVs. PTVsmainly
decrease protein levels by nonsense mediated decay. As most of the
missense variants are hypomorphs with partial loss of function, sgene
and sPTV are highly correlated (Fig. 3a). However, some variants can be
damaging through mechanisms other than loss of function. We high-
lighted risk genes with known genetic modes54 (Fig. 3b-e, Supple-
mentaryData 1). Autosomal recessive genes are least intolerant of PTVs
compared with other genes associated with dominant inheritance.
Haploinsufficient genes are under strong selection on PTVs. Genes
with dominant negative effects are likely to be under strong selection

Fig. 1 | Poisson-Inverse-Gaussian (PIG)distributionwithadjustedparameters to
approximate allele count distribution. a mean and (b) variance of sample allele
frequency (AF) under different population genetics models, including our PIG
model and Negative Binomial (NB) model with different effective population size.
Diploid sample size is 200K. Mutation rate is 10�8. c The accuracy of maximum
likelihood estimation (MLE) of s. Here s is a categorical variable of 0.00001, 0.0001,

0.001, 0.01, 0.1, 1. Accuracy is measured by the proportion that the estimated
categorical s equals the simulated in 400 simulated groups. Each group contains a
certain number of variants (x-axis) with same s. Solid lines are samples froma single
population, while dashed lines are samples from two populations (half of the
indicated number for each population).
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onmissense and PTVs. Notably, for gain-of-function, a subset of genes
are only constrained on missense but not on PTVs (Supplementary
Fig. 8). For example, several germline missense variants in oncogene
KRAS lead to Noonan syndrome by hyperactivation of the protein55.
The gene-level selection on missense variants is significantly higher
than PTVs (sgene =0:37, sPTV =0:00020).

MisFit is predictive of allele counts of ultrarare variants in dif-
ferent populations
As MisFit_S is able to predict s with amino acid resolution (Supple-
mentary Fig. 9), we asked how informative MisFit_S is to predict allele
frequency of rare variants in a population of different ancestries. We
extracted 215,138positionswithout observedmissense variants orwith
ultra-rare (sample allele frequency <5 × 10�6) missense variants and
highmutation rate (ν > 10�7) in 4073 constrained genes of the training
set (UKBB and gnomADNFE, 236,017 samples, thus allele count ≤ 2 for
most highly covered sites). We binned the variants by estimated Mis-
Fit_S and analyzed the counts in a second population of a different
ancestry, which is gnomAD African/African American (AFR) with
28,872 individuals. Putative variants in these positions would have
emerged very recently, and their allele frequencies are relatively
independent between the two populations. As expected, the propor-
tion of variants with 0-count in gnomAD AFR samples is positively
correlated with MisFit_S (Supplementary Fig. 10a). The opposite trend
is observed for the percent of variants with 10 times higher allele fre-
quency in AFR (Supplementary Fig. 10b). To assess which part of the
model helps with prediction of s, we built several models with fewer
and simpler components. In the baseline model (model 0), s is esti-
mated from only the mutation rate and allele counts with a global
prior. For this chosen set of variants of highmutation rate, allele count
is informative as shown in the stepwise curve causedby allele counts of
0, 1, 2 in the training set. However, the difference in absolute value of
selection is subtle (Supplementary Fig. 10c). Adding the gene-level
selection (model 1) in the model largely improves and smooths the
estimation and outputs awider range of s. Using ESM-2 zero-shot score

to infer probability of damage (model 2) further helps the prediction,
indicated by a greater slope of the monotonic increase, but is not as
good as the full MisFit model, which uses the ESM-2 embedding.

Comparison of selection coefficient with de novo fraction
Next, we evaluate whether MisFit_S approximates heterozygous selec-
tion coefficient s in absolute scale. We obtained missense de novo
(16,876 cases, 5750 controls) and inherited variants (6507 cases, 2992
controls) from an autism spectrum disorder study1 (2). MisFit_S of de
novo variants are significantly higher than inherited variants (Supple-
mentary Fig. 11). We binned the variants based on MisFit_S and normal-
ized the counts as per individual (Fig. 4a). The difference between cases
and controls is significant for de novo missense variants for strongly
deleterious variants (MisFit_S >0.01), but is subtle for inherited variants,
even if limiting the data to known autism genes (Supplementary Fig. 12).

In a new generation when selection has not occurred, de novo var-
iants are expected to take up a proportion that is equivalent to s when s is
relatively large44. Such relationship holds for randomly selected samples
regardless of their own phenotypes, but not for samples specially chosen
with known family backgrounds (Supplementary Note). We aggregated
the variants by their selection coefficient and calculated the fraction from
the de novo variants. The de novo ratio in autism cases is consistent with
MisFit_S, indicating the accuracy of estimated s in absolute scale. In
controls, which were unaffected siblings in families ascertained by cases,
highly deleterious de novo variants are lower than s as expected.

Analytical utility of selection coefficient for de novo variants in
developmental disorders
In addition to the autism data, we obtained de novo variants from stu-
dies of neurodevelopmental disorders (NDD, most individuals have
global developmental delay or intellectual disability)56 (31,565 cases)
(Supplementary Data 2). Previous studies1,3,56 have shown that a sub-
stantial fraction of de novo missense variants in these cases are risk
variants for NDD. Autism and NDD are relatively common conditions
with early-onset phenotypes. Autism has a prevalence approaching
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0.02857, and selection on autism is around 0.758. Thus, highly penetrant
risk variants are not likely to be transmitted into the next generation,
resulting in a high selection coefficient. As expected, de novo variants in
cases have a higher MisFit_D and MisFit_S than controls (Fig. 5). We
compared our results with other missense variant effect prediction
methods34–37,51,59–61. Although there is no ground truth to know which
variants actually increasedisease risk, we could calculate the enrichment
of variants under different thresholds, which is the ratio of number of
variants in cases to what is expected in controls (Methods). Among
variants ranked in the top 10 percentiles by multiple methods, MisFit_S
reached a higher enrichment ratio (Fig. 6) than any other method.

We then derived the precision-recall-proxy curves (Supplemen-
tary Fig. 13, Methods) by the excess number of variants under
thresholds. MisFit_S outperforms other methods in high precision
range, reaching a precision of 0.67 and 0.87 for autism and NDD,
respectively, at MisFit_S = 0.1. The next best methods are
AlphaMissense61 and gMVP37. The estimated precision can serve as
weights or informative priors in statistical methods like
DeNovoWEST56 or extTADA62–64 to improve the power in risk gene
discovery. The selection coefficients estimated by baseline methods
with fewer components are also informative in enrichment of de novo
variants but are inferior to MisFit (Supplementary Fig. 14-15).

MisFit identifies damaging variants consistent with deep muta-
tional scan data
MisFit-estimated d (MisFit_D) is about themolecular effect ofmissense
variants, which can be partly measured by deep mutational scanning
(DMS) experiments. We compared MisFit_D with published
methods34–37,51,59–61 on predicting damaging variants in DMS for indivi-
dual genes. First, we collected functional readout scores from 32 DMS
assays in 26 genes11–17,19–31 with 44,100 single amino acid substitutions
(Supplementary Data 3). We calculated the Spearman correlation
between the functional scores and computational scores (Fig. 7a).
MisFit_D has a similar performance with ESM and AlphaMissense.

As raw functional readouts from these experiments could be
noisy, we further restricted the sets to variants in 13 genes with DMS
annotated binary labels or with a bi-modal functional score distribu-
tion (Supplementary Fig. 16). For the latter, we labeled damaging
variants by two-component Gaussian Mixture models for each assay
independently (Methods, Supplementary Data 4). For genes with
multipleDMSassays, we combined thesedatasets and label a variant as
damaging if it is damaging in any one of the assays. The average area
under ROC curve (AUROC) for MisFit_D still approaches the state-of-
art performance (Fig. 7b).

In some genetic analysis, we often set a heuristic and fixed
threshold across all genes when selecting possibly damaging variants.
To evaluate the performanceunder this setting, we combined theDMS
assays across genes, and tested the performance in the combined
dataset. Since the labels are unbalanced, we define the optimal
threshold as that which achieves the highest Matthew’s correlation
coefficient (MCC) in the combined dataset. When setting this optimal
threshold for classification, we calculated the MCC in each individual
gene. MisFit_D remains effective, meaning that the prediction is con-
sistently informative across genes (Fig. 7c). MisFit_D is intended to
quantify the degree of damage solely based on variant-level property,
and we expect it to be distributed similarly across genes. In contrast,
selection coefficient (MisFit_S) is by nature determined by both var-
iant- and gene-level properties and should not have the same range in
different genes. Supplementary Fig. 17 shows gene-specific score dis-
tribution and optimal threshold.

Finally, we investigated the distribution of sensitivity in different
genes (Supplementary Fig. 18). Sensitivity is only related to the dama-
ging variants in the dataset. Deepmutational scanning assays are usually
designed to evaluate only one aspect of gene function, so the identified
damaging variants could be more reliable, while benign ones may dis-
rupt theprotein in someotherways not evaluatedby the assays. Under a
threshold achieving a global sensitivity of 0.5, MisFit_D has a low var-
iance across genes (Fig. 7d). Overall, unsupervised methods (MisFit,
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ESM1b and ESM2) have lower variance of sensitivity across genes than
supervised methods (gMVP, REVEL, and AlphaMissense).

Discussion
We developed a probabilistic graphical model, MisFit, to estimate the
fitness effect of missense variants using large population sequencing
data. Selection coefficient (s) is a quantitative measurement of fitness
effect that can be informed by allele frequency in human populations,

but it is very difficult to estimate for individual variants. MisFit
addresses this issue bymodeling it as a sigmoid-shaped function of the
molecular effect d of a variant with a gene-specific prior, and jointly
modeling d as a non-linear function, approximated by deep neural
networks, of its protein sequence context. We trained themodel using
large sets of population sequencing data without any label of patho-
genicity. The estimated s is highly correlated with frequency of ultra-
rare variants in an independent population. Its value is consistent with
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theoretical expectation of the proportion of de novomutations among
observed variants in a population.

Previous efforts in estimating gene-specific6,7,65 or sub-genic41,66

regional constraints of missense variants showed the feasibility of
using humanpopulation data to identify coding regions that are under
strong selection, but these methods are heuristic and do not estimate
the effect of individual variants.MisFit is based on population genetics
models, representing an improved approach to using large-scale
population sequencing datasets for estimating variant effect. Addi-
tionally, the effect of a variant at the organism and population levels is
a combination of how the variant alters the protein and how the pro-
tein is involved in key biological processes relevant to human traits and
diseases. Two variants with the same degree of damage to protein
function may have different effects at the organism and population
levels if they occur in different genes. Methods that predict patho-
genicity by supervised learning are confounded by gene-level prop-
erties, as shown by the large variance of classification accuracy across
genes given a fixed threshold evaluated by deepmutational scan data.
MisFit’s graphical model is designed to untangle the gene-variant
confounding. As a result, MisFit_D has a more consistent scale across
genes assessed by mutational scan data; and MisFit_S, as a natural
combination of variant and gene properties, has superior performance
in prioritizing de novo variants in studies of developmental disorders
that have strong negative consequence in fitness.

In a longer timescale across species, negative selection is mani-
fested in conservation among homologous sites. Some unsupervised
models, such as ESM51,67,68 and EVE60, predict amino acid probabilities
using representation learning based on massive amounts of protein
sequences or multiple sequence alignment of homologous proteins.
Those alleles used in training are effectively neutral to become nearly
fixed in the corresponding species69. When further taking phylogenic
history into account, observed sequences are correlated, but the dis-
tribution may deviate from the stationary distribution of fitness land-
scape. Although these models are empirically effective70,71, for

relatively large s, all such deleterious variants are likely to be depleted
from the collection of wild-type sequences which are mostly fixed
alleles in each species, so theoretically their difference in s cannot be
easily estimated from MSA alone.

Such resolution in estimating relatively large s is especially
important for analysis of rare variants in genetic studies of early onset
conditions. If we assume an early onset condition is the main trait
under selection for a risk variant, then the selection of the variant
couldbe approximated as prevalence × relative risk × selection of the
condition. Thus, risk variants in conditions with high prevalence and
low fecundity, such as intellectual disability and autism58, tend to have
large selection coefficient. As the affected population are enriched of
risk variants with higher selection coefficients, they usually show
higher overall proportion of de novo variants in genetic analysis,
because this proportion approximates selection coefficients, which we
have shown theoretically and empirically. This explains why MisFit
shows superior performance in prioritizing de novo variants in autism
or NDD datasets. Additionally, the fitness effects of missense variants
estimated by MisFit are directly comparable to the estimated hetero-
zygous selection coefficient of protein truncating variants by previous
methods in a quantitative way. This could improve the power of
identifying new risk genes and help characterize genetic etiology of
human diseases.

We used the embeddings from a protein language model (ESM-2)
to represent protein sequence context as the input for the non-linear
function that predicts the effect atmolecular level. ESM-2 embeddings
implicitly capture protein structure information51. Explicitly repre-
senting protein structure features as input53,61 may improve prediction
by better capturing residue interactions and critical sites.

Finally, based on the simulation results, the accuracy of MisFit in
estimating mildly deleterious variants (s <0:001) is limited. Random
drift of these variants causes significant dispersion of allele frequency.
Merely increasing the sample size of the same population does
not help with the estimation. On the other hand, including diverse
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populations with different continental ancestry in training would
improve the accuracy, as ancestral effective population size increases
and variance from genetic drift decreases. We expect that the sample
size individuals of non-European ancestry with genome sequencing
will increase substantially in the near future from ongoing efforts such
as gnomAD7, All of Us5, GenomeAsia72, and the Three Million African
Genomes project73. We will be able to use these data to improve esti-
mation of fitness effect of variants under moderate selection in the
future.

Methods
Simulation based on European effective population size history
We simulated the distribution of allele frequency based on the history
of effective population size of European population for 10,000 gen-
erations. We obtained the European effective population size history
from the Schiffels and Durbin model49. We smoothened the data by
setting a growth rate for each period and adjusted the final effective
population size to 1.5 million, which is most consistent with distribu-
tion of observed allele counts of rare synonymous variants with high
roulette mutation rate (ν > 10�7). We assume no linkage and the same
background mutation rate (using the average mutation rate), no
positive selection effect, and each locus obtains one type of mutation
at most. We simulated the evolution of alleles with dense grids
of mutation rates ν 2 ½10�9, 3 × 10�7�, and selection coeffi-
cients s 2 ½10�6, 1�.

For a given mutation rate and selection coefficient, we simulated
100,000 independent sites. The simulation follows the Wright-Fisher
process considering mutation, drift and selection. We set a backward
mutation rate of ν0 = 10

�8. Suppose the effective population size at tth

generation is Nt , we have

qt�1 =
1� sð Þ 1� f t�1

� �
f t�1 + 1� 2sð Þf 2t�1

1� f t�1

� �2 + 2 1� sð Þ 1� f t�1

� �
f t�1 + 1� 2sð Þ f 2t�1

ð1Þ

f 0t =qt�1 1 � ν0
� �

+ 1 � qt�1

� �
ν ð2Þ

f t�1 and qt�1 are the pre-selection and post-selection allele fre-
quency in theprevious generation, and f 0t is allele frequency in zygotes
after introducing new mutations. Here, 2s (clipped at 1 if s >0:5) is
homozygous selection coefficient by fixing a dominance factor of 0.5.
Then we sample population allele counts in the new generation by a
binomial distribution:

mt � Binomial 2Nt , f
0
t

� � ð3Þ

f t =
mt

2Nt
ð4Þ

In the latest generation, sample allele counts m within sample
allele number n drawn from population could be regarded as a
Hypergeometric distribution.

m � Hypergeometric 2Nf inal ,mf inal ,n
� �

ð5Þ

As we havemfinal � Binomialð2Nf inal , f
0
f inalÞ, this is equivalent to

m � Binomial n, f 0f inal
� �

ð6Þ

Considering the age of sequencing samples (UK Biobank and
gnomAD) are relatively old, the observed alleles are already subject to
selection. We therefore used the adjusted post-selection allele

frequency for training the model.

qf inal =
1� sð Þ 1� f 0f inal

� �
f 0f inal + 1� 2sð Þf 02f inal

1� f 0f inal
� �2

+ 2 1� sð Þ 1� f 0f inal
� �

f 0f inal + 1� 2sð Þf 02f inal
ð7Þ

To investigate how a second population with a different genetic
ancestry can help with estimation, we simulated a pseudo-population
with the same European population size history. Here, q is kept same
for both populations at the beginning, and then evolves independently
for the recent Nr generations. We set Nr to be 2000 based on the split
time of European and Africa population. In this way, the final q in two
populations are partially correlated.

Modeling allele counts
Assuming infinite effective population size, allele frequency q at the
equilibrium state is deterministic given the mutation rate ν and het-
erozygous selection coefficient s.

q=
ν

s
ð8Þ

Therefore, the allele count m in samples with allele number n
follows a Poisson distribution:

m � Poisson nqð Þ ð9Þ

Although the formula gives us an overview of the relationship
between expected m and s, there is a substantial overdispersion of m
caused by the random drift effect. Taking random drift into account,
Nei’s model48 describes q as a Gamma distribution.

q � Gamma 4Neν, 4Nes
� � ð10Þ

Ne is the effective population size. Then we have a Negative
Binomial distribution for m.

m � NegBinom 4Neν,
n

4Nes +n

� �
ð11Þ

However, the real Ne is not constant. There has been exponential
population growth in all major continental populations. We used an
Inverse Gaussian model with adjusted parameters μIG, λIG to describe
the distribution of allele frequency. Inverse Gaussian distribution can
model a very long tailwhile keeping the probability density at 0 to be0
(In contrast, Gamma distribution may give out infinity density at 0).
More importantly, the likelihood function pðmjs;ν,nÞ should have a
tractable gradient to s. Thenm followsa Poisson InverseGaussian (PIG)
distribution:

q � InvGaussian μIG, λIG
� � ð12Þ

m � PoisInvGaussian nμIG, nλIG
� � ð13Þ

μIG and λIG are Inverse Gaussianmean and shape respectively. For
each setting of ν, s, we used the simulated allele frequency qsim to
estimate μIG =mean qsim

� �
, λIG = 1=meanð 1

qsim
� 1

μIG
Þ. Then we fit func-

tions μIG = f 1ðν, sÞ and λIG = f 2ðν, sÞ. Specifically, logμIG is a softminus
over s0 = logitðsÞ and linear over log ν, while log λIG is quadratic to log ν
(Supplementary Fig. 3). The likelihood of PIG distribution is calculated
by Bessel function of second kind.
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Data used in training and testing
Proteins and variants. We limit the gene set to 18,708 protein-coding
genes. One protein sequence is selected per gene (from Ensembl
v10474), based on the following order: 1. Uniprot75 canonical isoform; 2.
Corresponding to the transcript of ‘MANE select’; 3. Corresponding to
Ensembl canonical transcript (usually the longest). Among them,
18,605 have available population sequencing data for missense var-
iants and 16,623 for protein-truncating variants. All possible single
nucleotide variants in the coding region +−2 bp of the selected tran-
scripts are annotated using bcftools v1.1776. For protein-truncating
variants, ‘stop-gained’, ‘splice_donor’ and ‘splice_acceptor’ variants are
further annotated by LOFTEE6, and only high-confidence (HC) ones are
used in training or genetic analysis.

Population sequence data. We used the allele counts from UKBB8

unrelated individuals of European ancestry (145,103 exomes from
November 2020 release) and gnomAD6,7 Non-Finnish European ancestry
(56,885 exomes of v2.1.1 plus 34,029 genomes of v3.1.2) sequencing
data. These datasets only contain observed variants in these individuals,
but the vast majority of possible but not yet observed variants are also
important for estimation. We include all possible missense variants that
could result from a single nucleotide substitution. We set the allele
number (sample size) for positions without observed variants by the
allele number of the nearest position with observed variant in the same
exon, to account for sequencing depth variation, and the allele count of
these non-observed variants to 0. Same was done for gnomAD African /
African American population (8128 exomes plus 20,744 genomes) in
analysis. Variants that do not pass RF, InbreedingCoeff or AS_VQSR fil-
tering, or are located in low-complexity-region (annotated by gnomAD),
are excluded in training and analysis.

Site-specific mutation rate was mainly obtained from roulette
mutation rates. Variants on sex chromosomes do not have available
roulettemutation rates, so we used gnomAD6 mutation rates based on
3-mer context and methylation level, and calibrated them to an aver-
age of 10�8 in consistent with roulette. During training, mutation rate
and allele count are added across all single-nucleotide variants that
lead to the same amino acid change.

Protein sequence embeddings. Protein sequence embeddings are
extracted from the last layer of ESM-2 (650M) model for each 600 AA
length fragments (overlapping 200 AA if longer than 600 AA). The
zero-shot prediction of ESM-2 comes from logits value in the last layer of
ESM-2 and further renormalized to 20 amino acids excluding other
tokens.

Mammalian homologs. Homologous variants used in training include:
a. 21.8 million alternative amino acids in multiple sequence alignment
in 465 mammals from Zoonomia Project52; b. 2.9 million alternative
amino acids in 233 primate species from primateAI-3D53.

Deep mutational scanning assays. We selected 32 deep mutational
scanning assays from literature andMaveDB18 (SupplementaryData 3).
Several experiments provide classification of damaging or benign
variants in the publications. For the remaining experiments, wemodel
the functional scores (usually as log enrichment or depletion) by a two-
component Gaussian mixture for each experiment. Amino acid sub-
stitutions with probability of damaging >0.75 are defined as damaging
and that <0.25 are defined as benign. We selected experiments with
bimodal score distribution, of which the confident damaging + benign
variants make up more than 90% of all variants. In total, 13 genes with
damaging / benign labels were selected for evaluating AUROC and
MCC (Supplementary Data 4). If there aremultiple assays for the same
gene (CYP2C9, PTEN, VKORC1), we took the unionof damaging labels as
positives.

MisFit model architecture and parameters in view of a prob-
abilistic graphical model
For a gene i, the maximum heterozygous selection coefficient for
missense variants is denoted as si. In our model settings, si is trans-
formed into logit scale s0i to facilitate numeric computation. For each
variant k at position j, dijk is assumed to be a random variable of logit-
normal distribution.

s0i = logit si
� � � Normal μsglobal

,σsglobal

� �
ð14Þ

d0
ijk = logit dijk

� �
� Normal μdglobal

, σdglobal

� �
ð15Þ

Note that in the full MisFit model, distribution of d0
ijk is learned by

neural networks (NN1) as functions of the protein embeddings xi.

d0
ijk = logit dijk

� �
� Normal NN1

μ xi
� �

, NN1
σ xi
� �� �

ð16Þ

For variant-level heterozygous selection coefficient s0ijk , we
assume it’s linear to dijk (ranging from 0 to 1), where the minimum is
set to logitð10�4Þ and the maximum is si0.

s0ijk = f s0i,dijk

� �
ð17Þ

The purpose of our model is to approximate pðdijk jxiÞ and
pðsijk jxi, νijk ,mijk , nijkÞ, by two parts ofMisFitmodel,NN1 (functions of
only x) and NN2 (functions of NN1 xð Þ,m,n, ν), respectively. MisFit_D
and MisFit_S are the point estimates from these two probabilities,
which will be described in the next section.

Model training
TheMisFitmodel contains 4.4Mparameters in total. Training ofMisFit
involves several stages.

In stage 0, before the constructionof fullMisFitmodel, we trained
a baseline model (corresponding to model 1 in main text and Supple-
mentary Figs. 10, 14, 15). We estimated Θ : μsglobal

,σsglobal
;μdglobal

, σdglobal

bymaximizing
P

ijk log Esijk
pðmijk js0ijk , νijk ,nijkÞ, where s0ijk is calculated

from samples of dijk given the global priors (Eqs. 15, 16). Then we set bsi
as maximize a posteriori estimation of si.

bsi0= argmaxs0i
X
i

X
jk

log Es0 ijk p mijk js0ijk , νijk ,nijk , s0i
� �� �0

@

+ logp s0ijμsglobal
, σsglobal

� �� ð18Þ

This value of bsi is then used to initialize the main MisFit model.
In stage 1, we aimed to optimize the parameters in NN1 which

connects xi to dijk (Eq. 16). In brief, we would like to estimate

NN1, bsi0= argmaxNN1 , s0i

X
i

X
jk

log Es0 ijk p mijk js0ijk , νijk ,nijk , s0i
� �

+ log Edijk
pðyijk jdijkÞ

0
@

1
A

0
@

+ logp s0ijμsglobal
, σsglobal

� �� ð19Þ

where s0ijk is sampled from Eqs. 16, 17. This stage involves in several
periods. Here yijk is a Bernoulli variable denoting where such amino
acid change exists in wildtype homolog sequences, where the Ber-
noulli logit is simply dijk transformed by scaler ci. First, we trainedNN1

using all missense variants 13,406 genes well covered with both
mammal sequence alignment and human population data for 30
epochs with initial learning rate as 0.001. bsi was temporarily set as the
value in stage 0. Then we trained NN1 and bsi as well on 4073 con-
strained genes (gnomAD6,7 missense z score > 2 or pLI > 0.5) for 50
epochs with initial learning rate 0.0005. Finally, we kept NN1 and
further inferred bsi for all genes for 30 epochs.

Article https://doi.org/10.1038/s41467-025-59937-2

Nature Communications |         (2025) 16:4670 9

www.nature.com/naturecommunications


In stage 2, we did variational inference on the posterior distribu-
tion.

p d0
ijk jxi,mijk ,nijk , νijk , bsi

� �
=
p d0

ijk jxi

� �
p mijk jd0

ijk , bsi,nijk , νijk
� �

p d0
ijk

� � ð20Þ

Here, distribution of s0i is simply represented by its point estimatebs0i. We used a Normal distribution Normal μdijk
,σdijk

� �
as variational

family to approximate this distribution. In order to retrieve μdijk
,σdijk

in
one forward pass, they are modeled as functions in a second neural
network (corresponding to dense layers NN2 in stage 2 in Supple-
mentary Fig. 6).

μdijk
=NN2

μ
bsi0,mijk , nijk , νijk ,NN

1
μ xi
� �

,NN1
σ xi
� �� �

ð21Þ

σdijk
=NN2

σ
bsi0,mijk , nijk , νijk ,NN

1
μ xi

� �
,NN1

σ xi

� �� �
ð22Þ

Then like a variational autoencoder, optimizing the evidence
lower bound (ELBO) is equivalent to maximizing

E
d0
ijk�Normal μdijk

,σdijk

� �logp mijk jd0
ijk , bsi0

� �

�KL Normal μdijk
, σdijk

� �
jNormal NN1

μ xi
� �

,NN1
σ xi
� �� �� � ð23Þ

KL() represents Kullback-Leibler Divergence.
During this stage, bsi and parameters in NN1 were fixed and only

NN2 is updated for 20 epochs with initial learning rate of 0.001.
MisFit scores are specifically defined as follows:
MisFit_D: sigmoidðNN1

μ xi

� �Þ, the mean of pðd0
ijk jxiÞ transformed

back to original scale.
MisFit_Sgene: sigmoidð bsi0Þ, the MAP estimation of pðs0ijxi,mi,ni, νiÞ

transformed back to original scale.
MisFit_S: sigmoidðf ð bsi0, sigmoidðμdijk

ÞÞÞ, the derived s0ijk when
using the point estimate of s0i, and the point estimate of posteriormean
of dijk given by Eq. 21.

In our model, the random variable s are all represented in
logit scale, and our point estimate of s is also inferred in logit
scale then transformed back to the original scale. This eases the cal-
culation and potentially limits the systematic bias (Supplemen-
tary Note).

The main training stage 1 takes around 10 hours on 2 NVIDIA
A40 GPUs.

Enrichment of de novo variants and estimated precision-recall
De novo missense variants in 4 previous genetic studies are used for
analysis (Supplementary Data 2). Given a score threshold (to enrich
disease risk variants), the number of selected variants ism1 andm0 in
cases and controls respectively. These numbers are normalized by
number of synonymous variants msyn

1 and msyn
0 to calculate the

enrichment ratio.

r =
m1

m0
×
msyn

0

msyn
1

ð24Þ

Sensitivity (recall approximate) is estimated by the total number
of excess of variants comparing cases and control.

m0
1 =

r � 1
r

m1 ð25Þ

Precision is estimated by

m0
1

m1
=
r � 1
r

ð26Þ

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data generated by this study are all accessible, including MisFit_D,
MisFit_S for missense variants, and MisFit Sgene for each gene, and
have been deposited in the Zenodo77 (https://doi.org/10.5281/zenodo.
15230898). The data used for training in this study are available
at: • gnomAD6,7 (https://gnomad.broadinstitute.org/) • Zoonomia52

(https://zoonomiaproject.org/) • primateAI-3D53 (https://primateai3d.
basespace.illumina.com/) • MaveDB18 (https://www.mavedb.org/) for
deep mutational scanning data with accession numbers urn:ma-
vedb:00000001; 00000005; 00000013; 00000035; 00000036;
00000047; 00000048; 00000049; 00000050; 00000054;
00000055; 00000057; 00000059; 00000069; 00000078;
00000095; 00000096; 00000097; 00000108. These raw referenced
data canbeobtainedupon application: •Allele frequency data fromUK
Biobank8 (https://www.ukbiobank.ac.uk/) • Autism data from the
SPARK for autism study, including all coding variants, can be obtained
from SFARI base1: https://base.sfari.org . Variant prediction results for
analysis are collected: • ESM-251and ESM-1b67 (https://github.com/
facebookresearch/esm), AlphaMissense61 (https://doi.org/10.5281/
zenodo.8360242), gMVP37 (https://www.dropbox.com/s/nce1jhg3i7j
w1hx/gMVP.2021-02-28.csv.gz?dl=0) from their original releases.
• PrimateAI59, CADD34, REVEL35, MPC41 from dbNSFP78 v4.3 (https://
www.dbnsfp.org/).

Code availability
Codes and software used during data processing include: • ESM-
2-t33_650M_UR50D(https://github.com/facebookresearch/esm)
• Bcftools76 v1.17 (https://samtools.github.io/bcftools/)
• LOFTEE6 v1.0 (https://github.com/konradjk/loftee). The
machine learning model is built using tensorflow79 v2.8.0, and
statistical analysis is performed by scipy80 v1.8.0 and scikit-
learn81 v1.2.2. Other custom codes for model training and data
analysis could be found at Github (https://github.com/ShenLab/
MisFit) and also on Zenodo77 (https://doi.org/10.5281/zenodo.
15230898).
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