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Predicting functional effect of missense 
variants using graph attention neural 
networks
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Yufeng Shen    1,5,6 

Accurate prediction of damaging missense variants is critically important 
for interpreting a genome sequence. Although many methods have been 
developed, their performance has been limited. Recent advances in machine 
learning and the availability of large-scale population genomic sequencing 
data provide new opportunities to considerably improve computational 
predictions. Here we describe the graphical missense variant pathogenicity 
predictor (gMVP), a new method based on graph attention neural networks. 
Its main component is a graph with nodes that capture predictive features 
of amino acids and edges weighted by co-evolution strength, enabling 
effective pooling of information from the local protein context and 
functionally correlated distal positions. Evaluation of deep mutational scan 
data shows that gMVP outperforms other published methods in identifying 
damaging variants in TP53, PTEN, BRCA1 and MSH2. Furthermore, it achieves 
the best separation of de novo missense variants i n n eu ro developmental 
disorder cases from those in controls. Finally, the model supports transfer 
learning to optimize gain- and loss-of-function predictions in sodium and 
calcium channels. In summary, we demonstrate that gMVP can improve 
interpretation of missense variants in clinical testing and genetic studies.

Missense variants are major contributors to genetic risk of cancers1,2 
and developmental disorders3–5. Missense variants have been used, 
along with protein-truncating variants, to implicate new risk genes 
and are responsible for many clinical genetic diagnoses; however, the 
majority of rare missense variants are probably benign or only have 
minimal functional impact. As a result of the uncertainty of the func-
tional impact, most rare missense variants reported in clinical genetic 
testing are classified as variants of uncertain significance6, leading to 
ambiguity, confusion, overtreatment and missed opportunities for 
clinical intervention. In human genetic studies to identify new risk 
genes by rare variants, pre-selecting damaging missense variants on 

the basis of computational prediction is a necessary step to improve 
statistical power4,5,7,8. Computational methods are therefore critically 
important to interpret missense variants in clinical genetics and disease 
gene discovery studies.

Numerous methods such as Polyphen9, SIFT10, CADD11, REVEL12, 
MetaSVM13, M-CAP14, Eigen15, MVP16, PrimateAI17, model predictive 
control (MPC)18 and correct classification rates (CCR)19 have been 
developed to address the problem. These methods differ in several 
aspects such as the prediction features, how the features are repre-
sented in the model, the training datasets and how the model is trained. 
Sequence conservation or local protein structural properties are the 
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for example: cancer somatic mutation hotspots26; functional read-
out datasets from deep mutational scan studies of well-known risk 
genes27–30; and de novo missense variants (DNMs) from studies of 
autism spectrum disorder (ASD)4 and neurodevelopmental disorder 
(NDD)5. Finally, we investigated the potential utility of transfer learn-
ing for classifying gain-of-function (GOF) and loss-of-function (LOF) 
variants in specific gene families based on the generic model trained 
across all genes.

Results
Model architecture and prediction features
gMVP is a supervised machine learning method for predicting func-
tionally damaging missense variants. The functional consequence 
of missense variants depends on both the type of amino acid substi-
tution and its protein context. gMVP uses a graph attention neural 
network to learn representation of protein sequence and structure 
context and context-dependent impact of amino acid substitutions on  
protein function.

The main component of gMVP is a graph that represents a variant 
and its protein context (Fig. 1 and Supplementary Fig. 1). Given a vari-
ant, we define the 128 amino acids flanking the reference amino acid as 
protein context. We note that the average length of a protein domain 
annotated in the UniProt database is about 110 amino acids (Supple-
mentary Fig. 8). We build a star-like graph with the reference amino 
acid as the centre node and the flanking amino acids as context nodes 

main prediction features for early computational methods such as 
GERP20 and PolyPhen. The MPC and CCR methods estimate sub-genic 
coding constraints from large human population sequencing data, 
providing additional information not captured by past methods. Pri-
mateAI learns the protein context from sequences and local struc-
tural properties using deep representation learning. A number of 
studies have reported evidence that functionally damaging missense 
variants are clustered in three-dimensional protein structures21–23. 
Co-evolution captures the functional correlation between positions. 
Recent studies24,25 have shown that co-evolution helps to improve the  
prediction accuracy.

Here we present the graphical missense variant pathogenicity 
predictor (gMVP), a graph attention neural network model designed 
to effectively represent or learn the representation of all of the infor-
mation sources to improve prediction of the functional impact of 
missense variants. gMVP uses a graph to represent a variant and its 
protein context, with node features describing sequence conservation 
and local structural properties; it also uses a graph attention neural 
network to learn the representation of a large protein context and uses 
the co-evolution strength as edge features that can potentially pool 
information about conservation and coding constraints of distant 
but functionally correlated positions. We trained gMVP using curated 
pathogenic variants and random rare missense variants in the human 
population. We then benchmarked the performance using datasets 
that have been curated or collected by entirely different approaches,  
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Fig. 1 | An overview of gMVP model. gMVP uses a graph to represent a variant 
and its protein context defined as 128 amino acids flanking the reference 
amino acid. The amino acid of interest is the centre node (coloured orange) 
and the flanking amino acids are the context nodes (coloured light green). All 
context nodes are connected with the centre node but not each other. The edge 
feature is co-evolution strength. The node features include conservation and 
predicted structural properties. Centre node features also include the amino 

acid substitution; context node features include the primary sequence and the 
expected and observed number of rare missense variants in human population. 
We use three one-depth dense layers to encode the input features to latent 
representation vectors and used a multi-head attention layer to learn context 
vector c. We then use a recurrent neural layer connected with softmax layer to 
generate prediction score from c and the representation vector h of variant.
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and connect the centre node and every context node with edges. We 
use co-evolution strength between the centre node of the variant and 
the context node as edge features. The co-evolution strength is highly 
correlated with functional interactions and protein residue–residue 
contact that captures the potential three-dimensional neighbours in 
folded proteins24,25,31,32. This architecture therefore allows the model 
to directly represent interactions between the position of interest 
and each flanking position in a wide context window. For the centre 
node, we include the amino acid substitution, evolutionary sequence 
conservation, and predicted local structural properties, such as sec-
ondary structures, as features (Methods). For context nodes, in addi-
tion to primary sequence, sequence conservation and local structure 
features, we also include the expected and observed number of rare 
missense variants in the human population to capture the selection 
effect of damaging variants in humans18,19. Let x, {ni} and {fi} denote 
input feature vectors for the centre node, neighbour nodes and edges, 
respectively. We first use three one-depth dense layers to encode x, {ni} 
and {fi} to latent representation vectors h, {ti} and {ei}, respectively. We 
then use a multi-head attention layer to learn the attention weight wi 
for each neighbour and to learn a context vector c by weighting the 
neighbours. Attention scores play a key part in attention-based neural 
networks33,34. Our attention scores account for both the node features 
and the edge features. Specifically, we use tanh(W[h, ti, ei]) as attention 
scores, where tanh denotes a hyperbolic tangent activation function, 
and W is the weight matrix to be trained. We next used a gated recurrent 
layer35—which is widely used to leverage sequence context in natural 
language modelling—to integrate vectors c and h of the variant. Finally, 
we use a linear layer and a sigmoid layer to perform classification and 
output the damaging scores.

Model training and testing
We collected likely pathogenic and benign missense variants from 
curated databases (HGMD36, ClinVar37 and UniProt38) as training 
positives and negatives, respectively, and excluded the variants with 
conflicting evidence in the databases (Methods). To balance the posi-
tive and negative sets, we randomly selected rare missense variants 
observed in human population sequencing data DiscovEHR as addi-
tional negatives for training. In total there are 59,701 positives and 
59,701 negatives, which cover 3,463 and 14,222 genes, respectively. 
We used a stochastic gradient descent algorithm39 to update the 
model’s parameters at an initial learning rate of 1 × 10–3 and applied 

early stopping with validation loss as a metric to avoid overfitting. We 
implemented the model and training algorithms using TensorFlow40. 
The whole training process took ~4 h on a Linux workstation with one 
NVIDIA Titan RTX GPU. When benchmarking the performance using a 
range of datasets, we compared gMVP with other widely used methods 
in genetic studies such as PrimateAI17, M-CAP14, CADD11, MPC18, REVEL12, 
MVP16, ClinPred41 and BayesDel42.

Human-curated pathogenic variants have hidden false posi-
tives that are probably caused by systematic biases and errors, which 
can be picked up by deep neural networks; therefore, conventional 
approaches for performance evaluation, using testing data randomly 
partitioned from the same source as the training data, usually lead to 
an inflated performance measure. To objectively evaluate the perfor-
mance of the model, we compiled cancer somatic mutations that are 
unlikely to share the same systematic errors as the training datasets. We 
included missense mutations located in inferred hotspots on the basis 
of statistical evidence from a recent study26 as positives and randomly 
selected rare variants from the DiscovEHR database43 as negatives. The 
gMVP score distributions of cancer hotspot mutations and random 
variants have distinct modes (Fig. 2a). We selected a threshold of 0.75 
to indicate a binary prediction for other downstream analyses that can 
best separate the score distributions of the positives and negatives. 
When compared with other published methods, gMVP achieved the 
best performance with an area under the receiver operating charac-
teristic curve (AUROC) of 0.88 (Fig. 2b and Supplementary Table 2). 
REVEL is close with an AUROC of 0.86.

gMVP can identify damaging variants in known disease genes
Missense variants that occur in different protein contexts—even in the 
same gene—can have different impacts. This is the core problem in inter-
preting variants from known risk genes in clinical genetic testing and 
the discovery of new disease genes. As performance evaluation using 
variants across genes is confounded by gene-level properties, here we 
aim to evaluate the ability of gMVP and other methods to distinguish 
damaging variants from neutral variants in the same genes. To this 
end, we obtained functional readout data from deep mutational scan 
assays of four well-known disease risk genes, TP5330, PTEN29, BRCA128 
and MSH227, as benchmark data. The data include 432 damaging (posi-
tives) and 1,476 neutral (negatives) variants for BRCA1; 262 positives 
and 1,632 negatives for PTEN; 540 positives and 1,108 negatives for 
TP53; and 414 positives and 5,439 negatives for MSH2, respectively.  
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Fig. 2 | Evaluating gMVP and published methods using cancer somatic 
mutation hotspots and random variants in population. a, The gMVP score 
distributions for variants in cancer hotspots (labelled positives) and random 
missense variants in population (labelled negatives). b, Comparisons between 

the ROC curves of gMVP and other published methods. The ROC curves are 
evaluated on 878 cancer mutations located in hotspots from 209 genes and 1,756 
(that is, a twofold greater number of positives) randomly selected rare variants 
from the DiscovEHR data.
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We note that all variants in these four genes were excluded during gMVP 
training to avoid inflation in performance evaluation.

We first investigated the gMVP score distributions of damaging 
and neutral variants. Damaging variants clearly have different score 
distribution compared with the neutral variants in each gene (Sup-
plementary Fig. 2). gMVP scores are also highly correlated with func-
tional scores from the deep mutational scan assays, with a Spearman 
correlation coefficient of 0.67 (P = 1 × 10–246), −0.48 (P = 8 × 10–122), −0.53 
(P = 7 × 10–51) and 0.29 (P = 7 × 10–117) in TP53, PTEN, BRCA1 and MSH2, 
respectively (Supplementary Fig. 3 and Supplementary Table 3–6).

We then used functional readout data as the ground truth to 
estimate precision–recall and compared gMVP with other methods. 
The areas under the precision–recall curves (AUPRCs) of gMVP are 
0.78, 0.85, 0.81 and 0.39 for PTEN, TP53, BRCA1 and MSH2, respectively  
(Fig. 3), whereas the AUPRCs of the second-best method (REVEL) are 
0.63, 0.74, 0.73 and 0.35, respectively. PrimateAI, a recent deep rep-
resentation learning-based method, has AUPRCs of 0.32, 0.68, 0.45 
and 0.20, respectively. A comparison using receiver operating char-
acteristic (ROC) curves shows similar patterns (Supplementary Fig. 4).

Prioritizing rare DNMs using gMVP
To further evaluate the utility of gMVP in new risk gene discovery, we 
compared the gMVP scores of DNMs from cases with developmental 
disorders with those from controls. We obtained published DNMs 
from 5,924 cases in an ASD study4, from 31,058 cases in an NDD study5 
and from 2,007 controls (unaffected siblings from the ASD study)4. 

Although there is no ground truth because most of these DNMs were 
not previously implicated with diseases, there is a substantial excess of 
such variants in cases compared with the controls3,44,45, suggesting that 
a substantial fraction of variants in cases are pathogenic. We therefore 
tested whether the predicted scores of variants in cases and controls are 
significantly different and used significance as a proxy of performance 
(Fig. 4a). gMVP achieves a P-value of 38 × 10–9 and 28 × 10–40 for ASD or 
NDD versus controls, respectively, whereas the second-best method 
PrimateAI achieves a P-value of 38 × 10–6 and 28 × 10–38, respectively 
(Supplementary Fig. 5).

We then calculated the enrichment rate of predicted damaging 
DNMs of a method with a certain threshold in cases compared with 
the controls, and then estimated the precision and the number of true 
risk variants (Methods), which is a proxy of recall because the total 
number of true positives in all cases is a (unknown) constant that is 
independent of the methods. The estimated precision and recall values 
are directly related to the power of detecting new risk genes5,46. We also 
calculated the estimated precision and number of true risk variants 
on all missense variants (denoted as All Mis) in the dataset, without 
using any predictor. We compared the performance of gMVP with 
other methods by the estimated precision and recall–proxy curves 
(Fig. 4b,c). The optimal threshold of the gMVP rank score in cancer 
hotspots is 0.75; with this, we observed an enrichment rate of 2.7 and 
1.5 in NDD and ASD, respectively (Supplementary Tables 7 and 8), which 
corresponds to an estimated precision–recall of (0.62, 4,818) and (0.35, 
328), respectively. Furthermore, when using a lower threshold of 0.7, 
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gMVP can still keep the precision as high as 0.34, and achieved a recall 
of 377 in ASD. PrimateAI achieves overall second-best estimated preci-
sion and recall under different thresholds in both ASD and NDD. MPC, 
with a threshold of 0.8, can reach a high precision at 0.65 and 0.36 in 
NDD and ASD, respectively, but overall it has substantially lower recall 
than gMVP and PrimateAI.

Classifying mode of action of variants via transfer learning
In many genes, the functional impact of missense variants is complex 
and cannot be simply captured by a binary prediction. Heyne et al.47 
recently investigated the pathogenetic variants that alter the channel 
activity of voltage-gated sodium and calcium channels and inferred 
LOF and GOF variants on the basis of clinical phenotypes of variant 
carriers and electrophysiology data. The study also described a com-
putational model (funNCion) to predict LOF and GOF variants using 
a large number of human-curated features on electrophysiological 
properties. Here we sought to classify LOF and GOF variants using the 
gMVP model through transfer learning without additional curated 
prediction features. Transfer learning allows us to further train a model 
for a specific purpose using a limited number of training points by only 
exploring a reasonable subspace of the whole parameter spaces guided 
by previously trained models.

We obtained 1,517 pathogenetic and 2,328 neutral variants in ten 
voltage-gated sodium and ten calcium channel genes, in which 518 and 
309 variants were inferred as LOF and GOF variants, respectively, from 
the work by Heyne and colleagues47. To benchmark the performance, 
we used the same training and testing sets (90/10% breakdown) as 
funNCion.

We first evaluated the performance of gMVP and previous meth-
ods in distinguishing LOF or GOF from neutral variants. gMVP and 
REVEL both achieved the best AUROC of 0.94 (Fig. 5a and Supplemen-
tary Table 9). FunNCion47, which was trained specifically on the variants 
of the ion-channel genes, achieved a nearly identical AUROC of 0.93. 
We next sought to improve the performance using transfer learning. 
Starting with the weights from the original gMVP model, we trained a 
new model, gMVP-TL1, with both LOF and GOF variants in these genes 
as positives, and neutral variants as negatives (Methods). gMVP-TL1 
achieved an AUROC of 0.96, outperforming the original gMVP and 
published methods. Furthermore, to distinguish LOF and GOF variants, 
we trained another model, gMVP-TL2, also starting with the weights of 

the original gMVP model, but with different output labels for training 
(LOF versus GOF; Methods). The training set includes 465 LOF and 279 
GOF variants, whereas the testing set comprises 51 LOF and 30 GOF 
variants. gMVP-TL2 achieved an AUROC of 0.95, substantially better 
than funNCion (AUROC, 0.84), which trained on the same variants set 
with manually curated prediction features (Fig. 5b and Supplementary 
Table 10). This demonstrates that the gMVP model aided by transfer 
learning technique can accurately predict GOF and LOF variants in 
channel genes with a very limited training dataset.

gMVP captures conservation, structure and selection  
in humans
We calculated the correlation between predicted scores of gMVP 
and other methods on DNMs from ASD and NDD cases and controls  
(Fig. 6a). gMVP has the highest correlation with REVEL (Spearman 
ρ = 0.78), followed by a few other widely used methods such as BayesDel, 
MPC, CADD and PrimateAI (ρ > 0.6).

We then performed principal component analysis (PCA) on the 
DNMs from cases and controls to investigate the contributing factors 
that separate the variants (Fig. 6b and Supplementary Fig. 6). The 
input of the PCA is a score matrix in which rows represent variants and 
columns represent predicted scores by gMVP and other methods. We 
included two additional columns with gene-level gnomAD constraint 
metrics o/e-LoF and o/e-Mis (observed number over expected number 
for LOF and missense)48 to represent selection effect in humans. The 
first component (PC1) captures the majority of the variance of the data 
and best separates the DNMs in cases and the ones in controls. All meth-
ods have large loadings on PC1 (Fig. 6b). The second component (PC2) 
is largely driven by the gene-level gnomAD constraint metrics (Fig. 6b).  
The joint distribution of PC1/2 scores of DNMs from controls has a 
single mode at the centre. The joint distributions of scores of DNMs 
from cases have two modes (Fig. 6b and Supplementary Fig. 6b) that 
represent mixtures of likely pathogenic variants and random DNMs. 
Notably, gnomAD metrics have near orthogonal loadings on PC1/2 with 
GERP, which is purely based on cross-species conservation, suggesting 
that selection effect in humans provides complementary information 
to evolutionary conservation about genetic effect of missense variants. 
All methods (PolyPhen, eigen, CADD, VEST and REVEL) that do not use 
human or primate population genome data have loadings close to GERP 
on PC1/2. MPC and M-CAP, which use sub-genic or gene-level mutation 
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a, Distributions of gMVP-predicted scores for rare DNMs from ASD and NDD 
cases, as well as controls. We used a two-sided Mann–Whitney U test to assess the 
statistical significance of the difference between the cases and controls. Controls 
are unaffected siblings from the ASD study. b, Comparisons between gMVP and 

other published methods using DNMs from ASD cases and controls by precision–
recall–proxy curves. Numbers on each point indicate rank percentile thresholds. 
The positions of the All Mis points are estimated from all missense variants 
without using any prediction method. c, The same comparison using data from 
NDD cases and controls.
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intolerance metrics similar to gnomAD metrics, have the closest load-
ings as gnomAD metrics on PC1/2. gMVP and PrimateAI have similar 
loadings that are in the middle of GERP and gnomAD metrics.

We inspected the BRCT2 domain of BRCA1 to show how the gMVP 
model captures context-dependent functional impact. We observed 
that most damaging variants predicted by gMVP (>0.75) are located in 
the core region of BRCT2 domain (Fig. 6c). Furthermore, gMVP scores 
are highly correlated with evolutionary conservation (Fig. 6d and Sup-
plementary Fig. 7a; ρ = 0.57). Variants in the β-sheets are much more 
damaging than the ones in α-helix regions, and the ones in α-helix 
regions are more damaging than the ones in coil regions (Fig. 6d and 
Supplementary Fig. 7b), consistent with past discoveries21,49,50. Finally, 
amino acids mutated to proline (P) in helix regions are predicted to be 
highly damaging, even in positions not well conserved (Fig. 6d). This 
is consistent with the fact that proline rarely occurs in the middle of 
an α-helix51.

Discussion
We developed gMVP—a new method based on graph attention neural 
networks—to predict functionally damaging missense variants. gMVP 
uses attention neural networks to learn representations of protein 
sequence and structure context through supervised learning trained 
with large number of curated pathogenic variants. The graph structure 
allows co-evolution-guided pooling of predictive information of distal 
amino acid positions that are functionally correlated or potentially 
close in three-dimensional space. We demonstrated the utility of the 
gMVP in clinical genetic testing and new risk gene discovery studies. 
Specifically, we showed that gMVP achieves better accuracy in identi-
fication of damaging variants in known risk genes based on functional 
readout data from deep mutational scan studies. Furthermore, gMVP 
achieved better performance in prioritizing DNMs in cases with autism 
or NDD, suggesting that it can be used to pre-select damaging variants 
or weight variants to improve statistical power of new risk gene discov-
ery. Finally, we showed that with transfer learning technique, gMVP 
model can accurately classify GOF and LOF variants in ion channels 
even with a limited training set without additional prediction features.

gMVP learns a representation of protein context from training 
data, whereas previous ensemble methods such as REVEL, M-CAP, 
MetaSVM and CADD used scores from other predictors or other 
human-engineered features as inputs. With recent progress of 
machine learning in protein structure prediction52–55, neural network 

representations could capture latent structure beyond common linear 
representations of understanding of the biophysical and biochemical 
properties. We showed that representation learning allows gMVP to 
capture the context-dependent impact of amino acid substitutions 
on protein function. PrimateAI is a recently published method that 
also uses deep representation learning. gMVP achieved better perfor-
mance than PrimateAI in identification of damaging variants in known 
disease risk genes in comparisons that use functional readout data as 
well as in prioritizing rare DNMs from ASD and NDD studies. Although 
both models used evolutionary conservation and protein structural 
properties as features, the two methods have entirely different model 
architecture and training data. gMVP uses a graph attention neural 
network to pool information from both distal and local positions 
with co-evolution strength, whereas PrimateAI uses a convolutional 
neural network to extract local patterns from a protein context. For 
training data, gMVP used expert-curated variants and random vari-
ants in population as training positives and negatives, respectively. 
By contrast, PrimateAI used common variants in primates as nega-
tives and unobserved variants in the population as positives. Based 
on functional readout data of the four well-known risk genes, only 
15–25% of random variants have discernible impact on protein func-
tion. The positives used in PrimateAI training may therefore contain 
a large fraction of false positives. PrimateAI’s training strategy does 
have advantages. It avoids human interpretation bias and errors in 
curated databases of pathogenic variants, the positives used in gMVP 
training. It also can cover almost all human protein-coding genes, 
whereas curated databases such as ClinVar only cover hundreds of 
genes. Additionally, common variants in primates are probably all 
true negatives, whereas random observed rare variants in human 
population could have a non-negligible fraction of damaging variants. 
Making a new model that can use all of these datasets in training could 
further improve the prediction performance.

Several past studies have shown that the functional impact of 
missense variants is correlated among three-dimensional neigh-
bours21,22,56. Pooling information from three-dimensional neighbours 
could therefore improve predictions of functional impact. However, 
directly considering three-dimensional distances is limited by the 
fact that most human proteins have no solved tertiary structures with 
considerable coverage. gMVP addresses this issue by taking a large 
segment of the protein context that include both local and distant 
positions that are potential neighbours in folded proteins, and then 
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Fig. 5 | Evaluating gMVP and other published methods in classifying 
pathogenetic and neutral variants, and in predicting GOF and LOF variants 
in ion-channel genes. a, Comparison of ROC curves in classifying pathogenic 
variants and neutral variants. gMVP-TL1 denotes the model further trained on 

the pathogenetic and neutral variants in SCNxA genes starting from the weights 
of the original gMVP model. b, Comparison of ROC curves in classifying GOF 
and LOF variants. gMVP-TL2 denotes the model further trained on GOF and LOF 
variants starting from the weights of the original gMVP model.
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uses co-evolution strength to effectively pool information from poten-
tial three-dimensional neighbours. Used as edge features in a graph 
attention model, co-evolution strength allows more precise pooling of 
information from distant residues than the convolutional layer without 
prior structure. Co-evolution information has been used by previous 
methods for predicting functional impact of missense variants, such 
as PIVOTAL25, a supervised ensemble predictor that combines scores 
from existing methods and EVmutation, an unsupervised method that 
learns co-evolution and conservation using Markov random fields 
from multi-sequence alignments (MSAs). Moreover, co-evolution 
information has been used in ab initio protein structure prediction 
extensively32,54,57. The extraordinary performance of AlphaFold55,58 

in CASP14 shows that it contains critical information about physical 
residue–residue distances for accurate structure prediction of most 
proteins in the human proteome. The language model Transformer33 
has more recently been applied on protein sequences and MSAs to 
improve the performance of co-evolution strength estimation and 
protein residue–residue contacts prediction59–61. gMVP could be fur-
ther improved by integrating components of Transformer and pro-
tein three-dimensional structures in the model. On the other hand, 
MSA-based methods are limited for the proteins with no or few homolo-
gous sequences and could be improved by integrating the learned rep-
resentations on large-scale unlabelled sequence data using sequence 
language modelling60.
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Fig. 6 | Interpreting gMVP predictions with conservation, protein structure 
and genetic coding constraints. a, Spearman correlation between gMVP and 
other published methods, calculated by scores of the DNMs in ASD, NDD and 
controls. b, PCA on DNMs from ASD and NDD cases and controls. Red arrows 
show the loadings of gMVP and published methods on the first two components; 
the density contour shows the distribution of PC1/2 scores of the variants in 
NDD and controls. The density curves along the axes show the distribution of 
PC1 or PC2 scores of the cases and controls. c, The protein tertiary structure of 
BRCT2 domain of BRCA1. We coloured a residue blue if at least one missense on 

this position is predicted to be damaging (gMVP > 0.75) and orange otherwise. 
d, gMVP scores of all possible missense variants on the BRCT2 domain of BRCA1. 
The top bar plot shows the predicted probabilities of the protein secondary 
structures, whereas the bar below shows the real protein secondary structures 
calculated by DSSP. The middle heat map shows gMVP scores for all possible 
missense variants on each protein position (the darker the colour, the higher 
the gMVP score). The bottom histogram shows the evolutionary conservation 
measured with the Kullback–Leibler divergence between amino acid distribution 
among homologous sequences and amino acid distribution in nature.
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With transfer learning, the trained gMVP model can be further 
optimized for more specific tasks in genetic studies. The idea is to 
transfer the general knowledge learned from large training datasets 
to a new related and more specific task with only limited training data. 
The trained model can set the initial values of the weights in the model 
to be updated by further training to explore only a subspace of the 
whole parameter space. We have shown its feasibility in classifying 
GOF and LOF variants in the ion-channel genes using a limited num-
ber of training data points without additional prediction features. 
We expect that with transfer learning, gMVP can potentially improve 
variant interpretation by training gene family-specific models62 and 
identifying disease-specific damaging variants63.

Functional readout data from deep mutational scan provides 
strong evidence of classifying variants as damaging or neutral27–30,64,65. 
However, these in vitro functional readout assays usually reveal only 
one aspect of a protein’s function in a limited number of cell types; 
therefore, they are often not completely correlated with the functional 
impact of the variants in vivo. We expect that more comprehensive deep 
mutational scan assays will become available and facilitate substantial 
improvement in the training and evaluation of computational methods.

Finally, we showed that although evolutionary conservation 
remains one of the most informative sources for computational meth-
ods, selection in humans can provide complementary information for 
prediction. The selection coefficient is correlated with allele frequency, 
especially for variants under strong negative selection46,66–68. Larger 
population genome datasets can further improve estimation of allele 
frequency of rare variants. We anticipate large69 and diverse70 popula-
tion genome data released in the future will improve estimation of 
selection effect in human and in turn improve gMVP.

Methods
Training datasets
For the positive training set, we collected: 22,607 variants from Clin-
Var database37 under the pathogenic and likely pathogenic categories 
with a review status of at least one star; 48,125 variants from the Human 
Gene Mutation Database Pro v.2013 (HGMD) database36 under the dis-
ease mutation category; and 20,481 variants from UniProt labelled as 
disease-causing. For the negative training set, we collected 41,185 variants 
from ClinVar under the benign and likely benign categories, and 33,387 
variants from SwissVar38 labelled as polymorphism. After excluding 3,751 
variants with conflicting interpretations from the three databases, we 
have 63,304 and 66,102 unique positives and negatives, respectively. 
We next excluded 36,499 common variants (653 positives and 35,846 
negatives) with an allele frequency >1 × 10–3 in gnomAD (all populations)48 
and 3,080 overlapping variants (2,680 positives and 400 negatives) with 
testing datasets from the training dataset, resulting in a dataset of 59,701 
positives and 29,856 negatives. To balance the positive and negative train-
ing samples, we randomly selected 29,845 rare missense variants from the 
DiscovEHR database43 that are not already covered by previously selected 
training data as additional negative training points. In the end we have 
59,701 and 59,701 unique positive and negative training variants (Sup-
plementary Table 1), which cover 3,463 and 14,222 genes, respectively.

Testing datasets

 (1) Cancer somatic mutation hotspots: we obtained 878 missense 
variants located in somatic missense mutations hotspots in 209 
cancer driver genes from a recent study26 as positives, and ran-
domly selected twofold more rare missense variants (N = 1,756) 
from the population sequencing data DiscovEHR43.

 (2) Functional readout data from deep mutational scan experi-
ments: we compiled variants in BRCA128, PTEN29, TP5330 and 
MSH227. Findly and colleagues30 applied genome editing to meas-
ure the functional consequences of all possible single nucleotide 
variants (SNVs) in key regions of BRCA1, where the functional 

scores measured the SNV effects on the cell survival of the 
cloned cells. Mighell et al.29 used a yeast model to systemati-
cally evaluate the effect of PTEN mutations on lipid phosphatase 
activity in vivo. Kotler et al.30 created a synthetically designed 
library and measured the functional impact of the DNA-binding 
domain p53 variants in human cells in culture and in vivo. Jia 
et al.27 developed a human cell line model for MSH2 to measure 
the chemical selection for mismatch repair dysfunction. The 
functional scores for PTEN and BRCA1 correlate negatively, 
whereas the functional scores for TP53 and MSH2 correlate posi-
tively, with the pathogenicity of the variants, respectively. 
We used the suggested thresholds of the functional scores 
to label the positives and negatives for the variants. We only 
include the SNVs for comparison as most published methods 
do not provide scores for the non-SNVs. There are 432 positives 
and 1,476 negatives in BRCA1; 258 positives and 1,601 negatives 
in PTEN; 540 positives and 1,108 negatives in TP53; and 414 posi-
tives and 5,439 negatives in MSH2.

 (3) DNMs: to evaluate utility in new risk gene discovery, we used pub-
lished rare germline DNMs from 5,924 cases and 2,007 controls in 
an ASD study4 and 31,058 cases in a neural developmental study5.

To fairly compare our methods with published methods, we 
excluded the overlapping variants with testing datasets from the train-
ing datasets. We further excluded all variants in PTEN, TP53, BRCA1 and 
MSH2 in training to avoid inflation in performance evaluation.

Past published methods included for comparison
We compared gMVP with PrimateAI, MPC, REVEL, M-CAP, MVP, Clin-
Pred, BayesDel, EVmutation, SIFT, PolyPhen2, SIFT, phastCons71 and 
GERP. We calculated scores of EVmutation using its public software 
package (https://github.com/debbiemarkslab/EVmutation). We used 
the pre-computed scores of other methods compiled by dbNSFP. We 
annotated the variants in the testing test with these scores using VEP 
plug-in for dbNSFP.

The graph attention neural network model
gMVP uses a graph to represent a variant and its protein context. We 
first defined the 128 amino acids flanking the reference amino acid as 
protein context. We next built a star-like graph with the reference amino 
acid as the centre node and the flanking amino acids as context nodes, 
and with edges between the centre node and each context node (Fig. 1  
and Supplementary Fig. 1).

Let x, ni and fi denote input feature vectors for the centre node, 
each context node and each edge, respectively. We first used three 
one-depth dense layers to encode x, ni and fi to latent representation 
vectors h, ti and ei, respectively. We used RELU72 as the activation func-
tion and 512 neurons for each dense layer.

We then used a multi-head layer adapted from the attention layer 
in the Transformer model33 to pool information from context nodes 
and finally to learn a context vector c. Specifically, for the kth head, we 
first calculated the value vectors for each context node by v(k)i = Ŵ

(k)
ti. 

We next calculated attention scores for each context node through 
ski = tanh (W(k) [h, ei, ti]) + pi, where tanh denotes a hyperbolic tangent 
activation function and pi is a position bias, which is a simplified posi-
tional encoding73. We note here that pi allows the model to capture local 
protein sequence context. Attention weights are calculated by  
applying a softmax operation on the attention scores, 

[w(k)
0 ,…w(k)

i ,…] = softmax ([s(k)0 ,… s(k)i ,…]).

The context vector c(k) for the kth head is calculated as 
c(k) = ∑w(k)

i v(k)i . The final context vector is obtained by a linear projec-
tion on the concatenation vector of the context vectors from each head,

c = Wp [c(0),… , c(i),… , c(K−1)] .
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Here K denotes the number of heads and we used four heads in our 
model. And we note that in the model, W(k), Ŵ

(k)
 and Wp are weight 

matrices to be trained.
We next used a gated recurrent unit layer35 to leverage the context 

vector c and the latent vector h of the given variant where the relative 
importance of the whole context can be determined. We used 512 
neurons and a hyperbolic tangent activation function for the gated 
recurrent unit layer. We finally used a linear projection layer and a 
sigmoid layer to perform classification.

Input features
The centre node, which represents the variant, has the following fea-
tures: reference and alternate amino acids, evolutionary conservation 
and predicted local structural properties. The context nodes have the 
following features: reference amino acids, evolutionary conservation, 
predicted local structural properties and observed and expected mis-
sense alleles in gnomAD48. The feature of edges is co-evolution strength 
between the position of variant and other positions, estimated from 
multiple sequence alignments of homologous sequences.

Reference and alternate amino acids (40 values): we used one-hot 
encoding with a dimension of 20 to represent reference and alternate 
amino acids.

Protein primary sequence (20 values): we also used one-hot encod-
ing to represent each amino acid in the protein primary sequence.

Evolutionary conservation (42 values): we estimated the evolu-
tionary conservation from two sources: (1) we searched the homolo-
gous of the protein of interest against SwissProt database74 with three 
iterations of search and then built the MSAs with HHblits suite75; (2) we 
downloaded the MSAs of 200 species from Ensembl website for each 
human protein sequence76. We then calculated the frequencies of 20 
amino acids and the gap for each position for the two MSAs separately 
and concatenated the two frequency vectors.

Predicted protein structural properties (five values): we predicted 
the protein secondary structures (three values), solvent accessibility 
(one value) and the probability of a residue participating in interactions 
with other proteins (one value) using NetsurfP77.

Observed number of missense alleles in gnomAD and expected 
number (two values): to capture selection effect in human, we obtained 
the observed number of rare missense variants in gnomAD48 and the 
expected number of rare missense variants estimated using a back-
ground mutation model48.

Co-evolution strength (442 values): we extract pairwise statistics 
from the MSA as co-evolution strength. It is estimated based on the 
covariance matrix constructed from the input MSA. First, we compute 
one- and two-site frequency counts fi (A) =

1
M
∑M

m=1 𝛿𝛿A,Xi,m  and 
fi,j (A,B) =

1
M
∑M

m=1 𝛿𝛿A,Xi,m 𝛿𝛿B,Xj,m, where A and B denote amino acid identities 
(20 + gap); δ is the Kronecker delta; i and j are position indexes on the 
aligned protein sequence; m is the sequence index of the MSA with a 
total of M aligned sequences; and Xi,m indicates the amino acid identity 
of position i on sequence m. We then calculate the sample covariance 
(21 × 21) matrix cA,Bi,j = fi,j (A,B) − fi (A) fj (B) and flatten it into a vector with 
441 elements. We also convert the covariance matrix to a single value 

by computing its Frobenius norm si,j =√∑20
A=1∑

20
B=1 (c

A,B
i,j )

2
 and then 

concatenate the norm and the flattened vector as the edge features.
We built these features only for canonical transcripts defined by 

Ensembl78 v.92. We annotated the variants using VEP79.

Training algorithm
We used cross-entropy loss as the training loss. We used the Adam 
algorithm39 to update the model parameters with an initial learning 
rate of 1 × 10–3 and decayed the learning rate with a polynomial decay 
schedule80. We randomly selected 10% of training samples as validation 
set and early stopping was applied with validation loss as a watching 
metric. We trained five models by repeating the above training process 

five times, and for testing, we averaged the outputs of the five models as 
prediction scores. The model and training algorithm were implemented 
using TensorFlow40.

Classifying GOF and LOF variants using transfer learning. To inves-
tigate the potential for transfer learning, we further trained gMVP to 
classify GOF and LOF variants in ion-channel genes with additional 
training data but without new features. We collected 1,517 pathogenetic 
and 2,328 neutral variants in SCNxA genes, which encode voltage-gated 
sodium and calcium channel proteins, in which 518 and 309 variants are 
inferred as LOF and GOF variants, respectively, from a recent study47.

We first trained a model, gMVP-TL1, to classify pathogenetic and 
neutral variants in SCNxA genes. We used the same dataset as fun-
NCion47, including 3,466 variants for training and 379 variants for test-
ing. We randomly selected 10% variants from training set as validation 
set. We used the same model architecture with gMVP and initialized 
weights of the new model with the weights of original gMVP model. In 
the new model training, we used Adam to update the parameters at an 
initial learning rate of 1 × 10–3 and used the validation loss as stopping 
criteria. We trained five gMVP-TL1 models, starting from each of the 
five trained gMVP models, and for testing, we averaged the outputs of 
these models as prediction scores.

We next trained another model gMVP-TL2 to classify GOF versus 
LOF variants in SCNxA genes. We used 744 variants as training set and 
81 variants as testing set, which are the same sets used by funNCion47. 
Like gMVP-TL1, gMVP-TL2 were also trained starting from the weights 
of gMVP model previously trained using all genes. We used the same 
hyperparameter settings with gMVP-TL1 in training.

Normalization of scores using rank percentile
For each method, we first sorted predicted scores of all possible rare 
missense variants across all protein-coding genes and then converted 
the scores into rank percentiles. The higher rank percentile indicates 
more damaging, for example, a rank score of 0.9 indicates the mis-
sense variant is more likely to be damaging than 90% of all possible 
missense variants.

Precision–recall–proxy curves
As there are no ground-truth data to benchmark our performance on 
DNMs, we estimate precision and recall at various thresholds based 
on the enrichment of predicted damaging variants in cases compared 
to controls.

Let S1 be the rate of synonymous variants in cases and S0 be the 
rate of synonymous variants in controls. Then the synonymous rate 
ratio α is defined as

α = S1
S0

Denote the total number of variants in cases as N1, the number of 
variants in controls as N0, the number of variants predicted as patho-
genic in cases as M1 and the number of variants predicted as pathogenic 
in controls as M0. We assume that for there to be no batch effect, the rate 
of synonymous variants should be the same in the cases and controls. 
So, we estimate the enrichment of predicted pathogenic variants in 
cases compared to controls by:

R =
M1

N1

M0

N0
× α

The true number of pathogenic DNMs M′
1 is then estimated by

M′
1 =

M1(R − 1)
R
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And the estimated precision is

ˆPrecision =
M′

1
M1

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Pre-computed gMVP scores for all possible missense variants in canoni-
cal transcripts on human hg38 can be downloaded from https://www.
dropbox.com/s/nce1jhg3i7jw1hx/gMVP.2021-02-28.csv.gz?dl=0. The 
training data of the main model were downloaded from http://www.
discovehrshare.com/downloads (DiscovEHR), http://www.hgmd.cf.ac.
uk/ac/index.php (HGMD), https://www.uniprot.org/docs/humpvar 
(UniProt) and https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/ 
(ClinVar). Other datasets supporting the findings of this study are avail-
able in the paper and the Supplementary Information.

Code availability
The codes for the model design and training and testing procedure 
are available on GitHub (https://github.com/ShenLab/gMVP/) and 
Zenodo81.
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