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Summary
To understand the genetic contribution to primary pediatric cardiomyopathy, we performed exome sequencing in a large cohort of 528

children with cardiomyopathy. Using clinical interpretation guidelines and targeting genes implicated in cardiomyopathy, we identified

a genetic cause in 32% of affected individuals. Cardiomyopathy sub-phenotypes differed by ancestry, age at diagnosis, and family

history. Infants < 1 year were less likely to have a molecular diagnosis (p < 0.001). Using a discovery set of 1,703 candidate genes

and informatic tools, we identified rare and damaging variants in 56% of affected individuals. We see an excess burden of damaging

variants in affected individuals as compared to two independent control sets, 1000 Genomes Project (p < 0.001) and SPARK parental

controls (p < 1 3 10�16). Cardiomyopathy variant burden remained enriched when stratified by ancestry, variant type, and sub-pheno-

type, emphasizing the importance of understanding the contribution of these factors to genetic architecture. Enrichment in this discov-

ery candidate gene set suggests multigenic mechanisms underlie sub-phenotype-specific causes and presentations of cardiomyopathy.

These results identify important information about the genetic architecture of pediatric cardiomyopathy and support recommendations

for clinical genetic testing in children while illustrating differences in genetic architecture by age, ancestry, and sub-phenotype and

providing rationale for larger studies to investigate multigenic contributions.
Introduction

Cardiomyopathy is a rare heart muscle disease that can

lead to heart failure and mortality.1–7 The age of onset of

primary cardiomyopathy, defined as disease of the myocar-

dium that does not affect other organs, is highly variable,

ranging from infancy to adulthood. Autosomal dominant

inheritance of cardiomyopathy in many families provides

evidence of a strong genetic component with high pene-

trance and variable expressivity.8–10 Gene discovery efforts

have implicated variation in sarcomeric genes as a cause of

primary cardiomyopathy.

Most gene discovery efforts have been limited to

adults. In studies that include both children and adults,

a full range of childhood ages is typically not well docu-

mented or represented.11 This is a problem because
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cardiomyopathy in children is more genetically heteroge-

neous and can encompass syndromic, metabolic, and

neuromuscular causes in addition to primary cardiomy-

opathies.6,12–17 While variants in sarcomeric genes are re-

ported in children’s cardiomyopathy as well,18 whether

there are pediatric-specific genes is not clear. Indeed, a

Finnish study of 66 children with cardiomyopathy

referred for transplant evaluation over 20 years identified

metabolic, sarcomeric, and syndromic causes in 39% of

these sickest of children and identified at least one novel

gene associated with disease.19 Thus, understanding of

the genetic causes of primary and idiopathic cardiomy-

opathy presenting in childhood is still extremely limited

and based on studies typically with less than 150 partic-

ipants. The lack of larger pediatric studies may explain

why there is marked practice variation20–26 despite
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guidelines that recommend genetic testing in children

with cardiomyopathy.12

The expected genetic heterogeneity and the number of

private (or infrequent) variants in pediatric cardiomyopa-

thy present an additional challenge to defining genetic ar-

chitecture. To be clinically actionable, variants must have

multiple tiers of evidence including bioinformatic predic-

tion, clinical phenotyping, familial segregation studies,

and functional studies,27 which makes confirming new

disease-causing variants difficult. Furthermore, both non-

synonymous (missense) variants and loss-of-function

(LoF) variants may cause the disease, depending on the

specific gene, which complicates disease-specific bio-

informatic predictions.8,10,11,28

When multiple variants (oligogenic inheritance) rather

than a single variant act to modify disease risk, these vari-

ants may not reach the threshold of clinical actionability

due to low penetrance. Thus, to gain understanding of

the genetic etiology of pediatric cardiomyopathy, consider-

ation of a broader list of variants beyond those meeting

clinical actionability criteria will be required as well as

non-Mendelian inheritance models such as gene burden.

As pediatric cases are rarer than adult cardiomyopathy

cases (1 in 100,000 compared to 1 in 500), targeted discov-

ery approaches will be essential as the number of pediatric

cases will be orders of magnitude lower than in adult

studies. Systems biologic approaches have been shown to

effectively leverage current biological knowledge to inform

which genes have the highest potential of contributing to

cardiomyopathy and to reduce multiple testing burden.

Given the relatively limited data on the genetics of car-

diomyopathy in children, the purpose of this paper was

to investigate the genetic architecture of pediatric-onset

cardiomyopathy. To address this question, we analyzed a

large cohort of children with cardiomyopathy in North

America. We determine likely genetic causes, identifying

the yield of testing by cardiomyopathy sub-phenotype,

age of diagnosis, and ancestry. Second, we provide an

exome-based assessment of the genetic architecture of pe-

diatric cardiomyopathy and identify an over-representa-

tion of bioinformatically predicted damaging variant

burden, some of which is ancestry dependent. These find-

ings facilitate deeper insight into the genetic architecture

of pediatric cardiomyopathy.
Subjects and methods

Cohort composition and exome sequencing
Participants with pediatric cardiomyopathy were recruited from

14 sites in the United States and Canada. The procedures followed

were in accordance with the ethical standards and the responsible

conduct on human and experimentation andwas approved by the

institutional review board (institutional and national). Proper

informed consent was obtained. The research methods, including

eligibility criteria, sample handling, and exome sequencing pro-

cedures, are described elsewhere.26 Briefly, individuals with famil-

ial or idiopathic hypertrophic cardiomyopathy (HCM [MIM:
The America
192600]), dilated cardiomyopathy (DCM [MIM: 115200]), restric-

tive cardiomyopathy (RCM [MIM: 115210]), or left ventricular

noncompaction (LVNC [MIM: 604169]) were eligible if the diag-

nosis was made before age 18. Individuals with LVNC sub-pheno-

type (n¼ 17) or LVNCwith HCM, DCM, and/or RCM in combina-

tion were given the designation of ‘‘LVNC/mixed.’’ Individuals

with more than one sub-phenotype without LVNC in combina-

tion were given the designation of ‘‘non-LVNCmixed’’ sub-pheno-

type. Exome sequencing was performed at Cincinnati Children’s

Hospital Medical Center with Nimblegen sequence capture (Seq-

Cap EZ Human Exome 2.0) and an Illumina HiSeq2500. The

mean sequence coverage over all samples was 793 (range: 31 to

155). Alignment was performed as described previously.26
Ancestry estimation
To estimate ancestry, variants with a minor allele frequency (MAF)

greater than 10% were identified in the dataset. These variants

were linkage disequilibrium (LD) pairwise pruned with the PLINK

procedure (window size, 50; step, 5; r2 threshold, 0.5). From the

LD-pruned variants, 5,000 variants were randomly selected.

Because principal-component analysis (PCA) can be performed

only on complete data, SNPs not called in all pediatric cardiomy-

opathy (PCM) cohort samples were excluded (the final sample was

3,027 variants). We performed PCA on these SNPs in the 1000 Ge-

nomes dataset to establish super population clusters. The distance

from each population centroid with three principal components

was calculated. Ancestry for PCM participants was based on being

localized within 3 standard deviations of the population centroid.
Clinical variant interpretation of curated genes
At study initiation and participant enrollment from 2013–2016,

37 genes were curated from the literature and from available clin-

ical genetic testing panels as genes in which pathogenic variation

is potentially causative in infants and children with idiopathic or

familial cardiomyopathy (Table S1). Two independent bio-

informatic groups (CCHMC and CUMC) identified rare variants

(MAF < 0.005) for further classification with the PCM exome files.

Variants (N ¼ 549) in this 37 gene curated gene list were inter-

preted as per American College of Medical Genetics and Genomics

(ACMG) clinical-variant interpretation guidelines (Table S1).27

Given the large number of variants in TTN (MIM: 188840) and

the strong evidence for truncating variants causing DCM, variant

interpretation was limited to nonsense and frameshift variants

within the A-band region of the protein.29,30 Variant interpreta-

tions by the two bioinformatic groups were 98% concordant

with adjudication between the two groups performed for the re-

maining seven variants to arrive at consensus interpretation.

The curated gene set and variant interpretations were frozen

January 2019 and used for subsequent analyses. The variant results

and interpretation criteria are provided in Table S1. Variant rein-

terpretation was performed October 2021 for likely pathogenic

(LP) and pathogenic (P) variants as noted in Table S1.
Compiling cardiac discovery gene list and sub-lists
Curated gene

The curated gene set included the following 37 genes: ABCC9

(MIM: 601439), ACTC1 (MIM: 102540), ACTN2 (MIM: 102573),

ANKRD1 (MIM: 609599), BAG3 (MIM: 603883), CAV3 (MIM:

601253), CRYAB (MIM: 123590), CSRP3 (MIM: 600824), DES

(MIM: 125660), EMD (MIM: 300384), LAMP2 (MIM 309060),

LDB3 (MIM: 605906), LMNA (MIM: 150330), MYBPC3 (MIM:
n Journal of Human Genetics 109, 282–298, February 3, 2022 283



600958), MYH6 (MIM: 160710), MYH7 (MIM: 160760), MYL2

(MIM: 160781), MYL3 (MIM: 160790), MYPN (MIM: 608517),

NEBL (MIM: 605491), NEXN (MIM: 613121), PLN (MIM:

172405), PRKAG2 (MIM: 602743), RBM20 (MIM: 613171),

SCN5A (MIM: 600163), SCO2 (MIM: 604272), SGCD (MIM:

601411), SURF1 (MIM: 185620), TAZ (MIM: 300394), TCAP

(MIM: 604488), TNNC1 (MIM: 191040), TNNI3 (MIM: 191044),

TNNT2 (MIM: 191045), TPM1 (MIM: 191010), TTR (MIM:

176300), VCL (MIM: 193065), TTN (MIM: 188840). We next

compiled multiple gene lists of cardiac discovery genes by using

multiple primary sources, including the Online Mendelian Inher-

itance in Man (OMIM) compendium, ClinVar data, the Gene

Ontology (GO) initiative, UniProt data, functional domains,

and phenotype associations through the ToppGene Suite

(Figure S1).31,32 We focused on finding and aggregating additional

genes either known or potentially associated with cardiomyopa-

thy, heart development, and cardiac muscle structure by using

available human phenotype, mouse phenotype, and co-expres-

sion data. The provenance of the gene lists is detailed in Table

S2. This search identified our broadest list of 1,703 potential car-

diac discovery genes. We also compiled several smaller lists within

the cardiac discovery gene set. Table S3 provides each gene list.

ClinVar gene set

The ClinVar gene list consisted of 70 genes associated with cardio-

myopathy having a P or LP variant (ClinVar Version August 2020):

ABCC9, ACTC1, ACTN2, ALPK3 (MIM: 617608), BAG3, BRAF

(MIM: 164757), CRYAB, CSRP3, DES, DMD (MIM: 300377),

DPM3 (MIM: 605951), DSG2 (MIM: 125671), DSP (MIM:

125647), DTNA (MIM: 601239), EYA4 (MIM: 603550), FKTN

(MIM: 607440), FLNC (MIM: 102565), GATAD1 (MIM: 614518),

GLA (MIM: 300644), HAND2 (MIM: 602407), JPH2 (MIM:

605267), LAMA4 (MIM: 600133), LAMP2, LDB3, LIMS2 (MIM:

607908), LMNA, MIPEP (MIM: 602241), MYBPC3, MYH6, MYH7,

MYL2, MYL3, MYLK2 (MIM: 606566), MYO6 (MIM: 600970),

MYOZ2 (MIM: 605602), MYPN, MYZAP (MIM: 614071), NCF1

(MIM: 608512), NDUFB11 (MIM: 300403), NEXN, NKX2-5

(MIM: 600584), PKP2 (MIM: 602861), PLN, PMPCA (MIM:

613036), PPC3 (MIM: 609853), PRDM16 (MIM: 605557), PRKAG2,

PSEN1 (MIM: 104311), PTPN11 (MIM: 176876), RAF1 (MIM:

164760), RBM20, RYR2 (MIM: 180902), SCN1B (MIM: 600235),

SCN5A, SCO2, SDHA (MIM: 600857), SDHD (MIM: 602690),

SGCD, TAZ, TCAP, TMEM43 (MIM: 612048), TNNC1, TNNI3,

TNNI3K (MIM: 613932), TNNT2, TPM1, TSFM (MIM: 604723),

TTN, TTR, VCL.

LoF-intolerant gene set

The LoF-intolerant gene set is the genes within the cardiac discov-

ery gene set that are highly intolerant to a LoF variant. The Exome

Aggregation Consortium (ExAC) uses the observed and expected

variant counts to determine the probability that a given gene is

highly intolerant to haploinsufficiency.33,34 The probability of

LoF intolerance (pLI) ranges from 0 to 1, where 1 indicates com-

plete intolerance. To identify genes that are highly intolerant to

LoF variants, we used a pLI [ExAC] score of 0.9 or greater. There

were 457 genes found in cardiac discovery with a pLi > 0.9, of

which 18 genes were found to have a damaging LoF variant per

CADD35 > 20.

Missense-intolerant gene set

Themissense-intolerant genes are the genes within the cardiac dis-

covery gene set that are highly intolerant to a damaging missense

variant. Given the high frequency of missense variants, we devel-

oped a damaging missense ratio (see methods below) to identify

genes specifically intolerant to damagingmissense variants; unlike
284 The American Journal of Human Genetics 109, 282–298, Februar
MisZ [ExAC], which can be used to identify genes intolerant to any

missense variant, we used the top 20% of the ranked genes in the

cardiac discovery gene set to create our missense-intolerant gene

list. There were 337 genes found in cardiac discovery with a

missense-intolerant score in the top 20 percentile, of which 89

genes were found to have a damaging missense variant per

Meta-SVM.

Damaging missense ratio

To evaluate the tolerance of pathogenic-like variants within a

gene, we compiled the number of synonymous variants and the

number of damaging missense variants (as per Meta-SVM) seen

in our 1,703 genes of interest across the participants in the 1000

Genomes data. We ranked the genes by taking the ratio of non-

synonymous damaging variation to synonymous variation and

selected 20% of the genes as those most intolerant to damaging

non-synonymous variation. The combined analysis includes all

damaging variants found across LoF-intolerant, missense-intol-

erant, curated, and ClinVar gene lists (Table S3, Figure S1).
Control cohorts
1000 Genomes

1000 Genomes Phase 3 individuals (n ¼ 2,504) were used as

control individuals.36 We also analyzed the cohort by super

population ancestry per 1000 Genomes: 503 European (EUR),

347 admixed American (AMR), and 661 African (AFR) individuals.

In PCA (Figure S2), we observed that individuals in the PCM

cohort overlap only a portion of the African population in 1000

Genomes. Therefore, we limited our analysis to the African

ancestry of Southwest USA (ASW; n ¼ 61) within the 661 African

(AFR) population in 1000 Genomes to better match the genetic

background of our African American participants.

Random genes in the Pediatric Cardiomyopathy cohort

As an additional control, we examined the damaging variant

burden of 1,703 cardiac discovery genes compared to the average

damaging variant burden of 1,703 random genes over 1,000 itera-

tions. We performed the same analysis for all gene lists. We also

compared burden distributions of damaging variants in individ-

uals for selected and random genes for all gene lists.

Simons Foundation Powering Autism Research for Knowledge (SPARK)

Control individuals (n ¼ 14,478) from unrelated parents in SPARK

were used. The case and control samples were called with GATK37

and jointly with GLnexus. We used the same principal compo-

nents calculated from the 1000 Genomes dataset to estimate the

ancestry for the SPARK control individuals. Control individuals

were matched to affected individuals with the smallest Euclidian

distance in the PCA space, resulting in 9,150 European (EUR),

1,920 admixed American (AMR), and 425 African American

(AFR) individuals.
Study design of exploratory analysis of damaging

variants
The clinical variant evaluation guided our approach to use MAF <

0.001 (overall and population ancestries) for affected individuals

and control individuals in the informatics pipeline. To filter vari-

ants that occurred at a higher rate than would be consistent

with a variant causing cardiomyopathy, we evaluated the

ancestry-specific MAF reported in gnomAD.38 To determine the

appropriate minor allele threshold for consideration, we evaluated

the MAF of the P/LP variants from our clinical variant interpreta-

tion and found that only three variants exceeded a minor allele

frequency equaling 0.001 based on the gnomAD ancestry-specific
y 3, 2022



MAF. Thus, we excluded variants that exceeded a MAF of 0.001 in

any of the ancestry-specific gnomAD MAF. We excluded variants

that did not pass gnomAD filters. We also excluded lower quality

variants observed in gnomAD in less than 80% of the exomes

i.e., variants with allele number (AN) less than 80% of total allele

count. We eliminated variants located in regions with low or no

coverage for the Nimblegen Exome Enrichment platform used

for the PCM cohort. We also excluded variants that failed GATK

filtering for the complete cohort (n ¼ 528 individuals) but had

passed GATK filtering during initial clinical evaluation (n ¼ 152

individuals).26 Since 1000 Genomes Project data were based on

multiple platforms and about 20% of their genotypes are imputed,

traditional exome workflows may miss many variants reported in

these data. Therefore, we applied additional cohort-specific filters

to remove any bias caused by different sequencing platforms. For

the PCM exomes, we excluded variants that did not pass our GATK

variant calling and applied a filtering allele frequency of 12 alter-

nate alleles or less. We only considered genotypes with a GQ score

of 20 or greater. For the 1000 Genomes data, we applied a filtering

allele frequency of four alternate alleles or less for EUR ancestry,

two alternate alleles or less for AMR ancestry, and two alternate

alleles or less for AFR ancestry. Given that the sample size of gno-

mAD is about 50 times the size of the 1000 Genomes Project, var-

iants captured by traditional exome sequencing were most likely

detected. Therefore, if a variant had a reported 1000 Genomes fre-

quency greater than 100-fold that of gnomAD, it was excluded as

artifact. We performed quality control metrics to assess exome-

wide missense, synonymous, and LoF variants in autosomes in

affected individuals and control individuals after applying

cohort-agnostic and cohort-specific filters.

Damaging missense variants

For missense variants, we considered rare (MAF % 0.001) variants

called ‘‘deleterious’’ by Meta-SVM, with a reliability of 0.5 or

higher that passed the above-mentioned quality and control fil-

ters. We selected Meta-SVM after analyzing several tools and their

accuracy at predicting P and LP variants in ClinVar39 associated

with cardiomyopathy.

Damaging LoF variants

For LoF variants, we considered rare (MAF% 0.001) variants with a

CADD Phred score40 of at least 20 that passed the above-

mentioned quality and control filters. The other pathogenicity

prediction tools we considered could not make appropriate calls

for LoF variants.
Statistical methods used
Dichotomous outcomes are reported as frequencies and contin-

uous outcomes reported as medians and interquartile ranges

(IQRs) unless otherwise specified. Descriptive statistics were calcu-

lated overall and by type of cardiomyopathy: DCM, HCM, RCM,

LVNC/mixed (including LVNC only or LVNC combined with

other cardiomyopathy types), and non-LVNC mixed cardiomyop-

athy sub-phenotype. To compare the rates of positive clinical ge-

netic findings, we used contingency tables with goodness of fit

tests. To estimate pairwise effects, we estimated odds ratios as well.

Our control populations in 1000 Genomes and our PCM cohort

were processed differently. Therefore, we used a strict internal

quality control to ensure our findings were not biased by these dif-

ferences. In addition, we compared the overall number of synon-

ymous andmissense variants between the cohorts. To test whether

individuals with cardiomyopathy in the PCM cohort had a higher

burden of damaging variants (as predicted with bioinformatics) in
The America
our gene lists (curated, ClinVar, intolerant, combined, and full car-

diac discovery) compared to the control population in 1000 Ge-

nomes, we used Wilcoxon rank-sum tests. To compare the cardio-

myopathy sub-phenotypes against 1000Genomes control, we also

usedWilcoxon rank-sum tests for continuous outcomes. All statis-

tical tests used were 2-tailed. To evaluate burden by ancestry

within the PCM cohort, we used logistic regression and tested

whether ancestry (restricted to EUR and AFR participants) was

associated with the presence of one or more damaging variants.

As cardiomyopathy type exhibited substantial differences in the

analysis of our clinical variants, we also evaluatedmodels with car-

diomyopathy type as a covariate in the logistic model.

We also used the random genes in PCM as a control set. For this

control, we compared the variant burden observed when selecting

an equal number of genes randomly 1,000 times.We used pairwise

Wilcoxon rank-sum tests for each replicate and calculated the me-

dian p value across the replicates. This was done separately by

ancestry for each gene list. As most of the gene lists had overall

low burden, we reported the median, as well as the 75th and 90th

centiles rather than the IQR.

For the case-control burden analyses (both using control cohorts

as well as the randomly selected genes), we performed 12 and 15

tests for control cohorts and randomly selected genes, respectively,

when comparing the overall PCM cohort. Thus, the Bonferroni-

corrected threshold for cohort analyses is p % 0.0042 and for

random gene list is p % 0.0033.
Results

Sex, ancestry, and age differences in pediatric

cardiomyopathy sub-phenotypes

The pediatric cardiomyopathy (PCM) cohort comprises

528 participants with cardiomyopathy who underwent

exome sequencing (Table 1), 54% of whom are males.

The cardiomyopathy sub-phenotypes differ with regard

to sex, and HCM occurs more frequently in males (69%).

Using data from the 1000 Genomes Project,36 PCA as-

signed genetic ancestry to all participants (Figure S2).

Self-reported race was highly concordant (99%) with con-

tinental ancestry. Ancestry for distinct cardiomyopathy

sub-phenotypes differed markedly (Table 1), and European

ancestry was more common in HCM and RCM. The age of

diagnosis also varied significantly by sub-phenotype, and

DCM and LVNC/mixed type occurred commonly in very

young children (median age of diagnosis, 1.3 and 1.7 years,

respectively) compared to a median age of diagnosis of

11.1 years in HCM. Participants with HCMhad the highest

frequency of a family history of cardiomyopathy, and 57%

had at least one affected family member (Table 1).
Diagnostic genetic findings

At study initiation, 37 genes were identified for potential

return of results to participants. After exome sequencing,

549 distinct variants (1,005 total instances) were evaluated

from these 37 genes for pathogenicity using ACMG guide-

lines (Table S1).27 After review, variants were classified as

127 unique P or LP, 308 unique variants of uncertain signif-

icance (VUSs) (Table S1; 176 total P/LP and 356 total VUS
n Journal of Human Genetics 109, 282–298, February 3, 2022 285



Table 1. Demographic information of 528 children with cardiomyopathy

Trait
All, 528
(100%)

DCM, 279
(52.8%)

HCM, 160
(30.3%)

RCM, 30
(5.7%)

LVNC/ mixed,
53 (10.0%)

Mixed not
LVNC, 6 (1.1%) p value

Male, % 53.6 46.6 69.4 50.0 49.1 16.7 <0.001

Ancestry, %a

European 58.0 50.2 71.3 80.0 45.3 66.7 <0.001

African 16.1 17.6 11.3 3.3 32.1 32.1

Asian 1.7 2.9 0.6 0 0 0

Admixed American 24.2 29.4 16.9 16.7 22.6 33.3

Age at diagnosis,
median (IQR), years

3.2 (0.4–12.8) 1.3 (0.3–9.4) 11.1 (3.2–14.0) 8.3 (1.7–13.2) 1.8 (0.2–12.5) 0.80 (0.1–12.3) <0.001

Family history of CM 36.0 24.2 57.2 28.6 35.9 50.0 <0.001

DCM, dilated cardiomyopathy; HCM, hypertrophic cardiomyopathy; RCM, restrictive cardiomyopathy; LVNC, left ventricular non-compaction; CM, cardiomy-
opathy; IQR, interquartile range.
aAncestry was defined via principal-component analysis with 1000 Genomes superpopulations.
instances) and 114 unique benign/likely benign (B/LB, 473

total B/LB instances). Missense variants (91.5%) were more

common than LoF variants (5.4%) and inframe variants

(3.1%).

Overall, 32% of the PCM cohort had a positive result,

i.e., P/LP variant (Figure 1), and another 35% had a

VUS. Only 1.3% of participants carried multiple P/LP var-

iants in different genes. Of the 303 participants (57%)

with no previous clinical genetic testing, 75 (25%) of

these had P/LP variants in one of the 37 known cardiomy-

opathy genes. Diagnostic yield was lower for DCM (19%)

than for RCM (50%) or HCM (51.3%; Figure 1; p < 0.001).

Diagnostic yield was also higher for European ancestry

than admixed American ancestry (OR, 2.0; 95% CI, 1.3–

3.3; p ¼ 0.0032) and showed a similar trend with higher

yield in European compared with African American

ancestry (OR, 1.6; 95% CI, 0.94–2.7; p ¼ 0.08)

(Figure 1B). These findings should be interpreted in the

context of a smaller cohort size of African American

ancestry and the fact that distinct cardiomyopathy sub-

phenotypes differed by ancestry.

Participants aged 0 to 5 years had the lowest fre-

quency of P/LP genetic findings (Figure S3). We then

compared the frequency of molecular diagnoses between

participants diagnosed with cardiomyopathy as infants

(12 months or younger) and older children. Infants had

lower rates of positive genetic results overall when treat-

ing cardiomyopathy type as a strata variable (p <

0.001). When stratifying by cardiomyopathy subtypes,

infants tended to have lower diagnostic yield, but none

of the individual comparisons was statistically significant;

HCM (p ¼ 0.053), DCM (p ¼ 0.07), and LVNC/mixed (p ¼
0.06; Figure 1C).

From the 37 cardiomyopathy-associated genes in the

curated gene list, we identified P/LP variants in 22 genes

(Tables S1 and S4). Variants in the sarcomeric genes

MYH7 and MYBPC3 were the most common causes, with

56 and 35 variants, respectively (Table S4). Notably, no Af-
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rican American ancestry participants hadMYBPC3 variants

compared to 8.8% (n ¼ 27/306) in the European or 3.9%

(n ¼ 5/128) in the admixed American cohorts. The African

American cohort, albeit small, had a significantly lower

rate ofMYPBC3 variants compared to European Americans

(p ¼ 0.0014). Restricting the analysis to HCM, there were

23 of 114 European ancestry HCM children with MYBPC3

P/LP variants as compared to 0 of 18 African American

ancestry (p ¼ 0.042). Eight African American ancestry

participants with DCM or LVNC/mixed carried the

p.Val142Ile TTR (rs76992529 [GenBank: NM_000371.3;

c.424G>A]) pathogenic variant (gnomAD38 AFR MAF ¼
0.0162) known to cause cardiac amyloidosis in older

adults. This variant was not considered causal in these par-

ticipants given their age and cardiomyopathy sub-pheno-

type. Three of these individuals had other P/LP variants

that explained their disease. In HCM, phenocopy genes,

non-sarcomeric genes whose variants cause ventricular hy-

pertrophy, have been identified in �3% of HCM samples

with diagnostic findings.11 We identified one pathogenic

variant in LAMP2, the cause of Danon disease and two

pathogenic variants in PRKAG2 encoding protein AMP ki-

nase gamma-2, resulting in glycogen storage disease of the

heart. In DCM samples, pathogenic variants were identi-

fied in BAG3, CRYAB, and DES, all of which are associated

with myofibrillar myopathy and may, in some instances,

have skeletal muscle findings in addition to DCM

(Table S4).

Gene-specific rates of P/LP variants were similar to rates

in adults for many well-established cardiomyopathy

genes, but we also found results that differed from adults

for RCM and DCM (Table 2). In HCM, P/LP variants in sar-

comeric genes predominated in our pediatric participants

as they do in adults. Specifically, we identifiedMYH7 P/LP

variants in 23.1% of our HCM participants, whereas

yields previously reported in adults are 16% to 19%. The

overall yield in HCM was 51.3% in our participants and

32% in a large HCM cohort from an academic genetic
y 3, 2022



Figure 1. Diagnostic yield of exome
sequencing
(A–C) Exome data were filtered for 37
known cardiomyopathy-associated genes,
and variants were classified per clinical
guidelines to identify pathogenic or likely
pathogenic variants, the presence of which
was considered a positive result. (A) Overall
diagnostic yield. (B) Diagnostic yield by
ancestry. (C) Diagnostic yield in infants
less than 1 year old (gray bars) and older
children (black bars), by subtype of cardio-
myopathy. The number of participants in
each age group is shown below each bar.
DCM, dilated cardiomyopathy; HCM,
hypertrophic cardiomyopathy; LVNC,
left ventricular noncompaction; PCM, pe-
diatric cardiomyopathy; RCM, restrictive
cardiomyopathy.
testing laboratory, including a yield of 28% in their 462

individuals with HCM age 16 or less.9 Because RCM is

so rare, gene-specific frequencies in adults are not avail-

able. In our cohort, TNNI3 and MYH7 had the most P/

LP variants among individuals with RCM, and variants

were also identified in TNNT2, DES, and MYL2. In chil-

dren with DCM, no one gene accounted for more than

4% of positive findings. In adults, DCM is also a geneti-

cally heterogeneous disorder, and gene-specific diagnostic

rates are low except for variants in TTN that account for

10%–20% of adult DCM (Table 2). Rates of P/LP variants
The American Journal of Human Ge
in MYH7, MYBPC3, TNNT2, and

RBM20 were similar to adults. Howev-

er, we found lower rates in LMNA and

TTN. P/LP variants were seen in

LMNA at a frequency of 1.4% in our

cohort versus 6% in adult cohorts

and TTN was seen at 3.2% in our

cohort versus 10% to 20% in adult co-

horts. The average age of the nine chil-

dren with TTN P/LP variants in our

cohort was 12.4 years (range 1.2–

15.1) and two children were African

American and seven were non-Hispan-

ic White.

The number of P/LP and VUS vari-

ants per participant for the curated

gene list (37 genes) showed that P/LP

variants are more commonly missense

(yellow) than LoF (red) when clustered

across sub-phenotypes and ancestries

(Figure S4). VUSs are also typically

missense variants (green) and are less

often seen in individuals with HCM.

HCM caused by MYH7 or MYBPC3

variants can be segregated into one

subset with multiple additional VUS

findings and a second subset with no

additional variants. Overall, when
considering both P/LP and VUS variants, DCM, LVNC/

mixed, and mixed phenotypes show high rare variant

burden across these 37 genes implicated in

cardiomyopathy.

Development of a cardiac discovery gene list and

informatic analysis of damaging variants

To expand to additional known and candidate cardiomy-

opathy genes, we identified 70 cardiomyopathy-associated

genes in ClinVar,39 32 of which were present in our curated

gene list (Table S3 and Figure S1) and combined them with
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Table 2. Differences in the genetic causes of cardiomyopathy between children in the pediatric cardiomyopathy cohort and adults

Gene
Adults with HCM,
range, %a

Children with
HCM, % (95 CI)

Children with
RCM, % (95 CI)

Adults with
DCM, %b

Children with DCM,
% (95 CI)

MYH7 16–19.2 23.1 (17.3–30.2) 10.0 (3.5–25.6) 4 2.9 (1.5–5.6)

MYBPC3 16–26 17.5 (12.4–24.1) 0 2–4 0.4 (0.06–2.0)

TNNI3 1.6–3 1.3 (0.3–4.4) 30 (16.7–47.9) 1 0.4 (0.06–2.0)

TNNT2 1.3–3.4 1.3 (0.3–4.4) 3.3 (0.5–16.7) 3 2.9 (1.5–5.6)

DES unknown 0.6 (0.1–3.5) 3.3 (0.5–16.7) <1 0.4 (0.06–2.0)

TPM1 1.1 3.1 (1.3–7.1) 0 <1–2 1.1 (0.4–3.1)

RBM20 N/A 0 0 2 1.8 (0.8–4.1)

LMNA N/A 0 0 6 1.4 (0.6–3.6)

MYL2 unknown 0.6 (0.1–3.5) 3.3 (0.6–16.7) unknown 0.7 (0.2–2.6)

TTN N/A 0 0 10–20 3.2 (1.7–6.0)

HCM, hypertrophic cardiomyopathy; RCM restrictive cardiomyopathy; DCM, dilated cardiomyopathy; N/A, not applicable.
aDerived from Ingles et al.41 and Alfares et al.11
bDerived from GeneReviews (see web resources).
genes curated from available ontologies. The provenance

of the 1,703 cardiac discovery genes is shown in Table S2

and each gene set is provided in Table S3. To reduce noise,

we identified genes intolerant to variation by using the pLI

metric to select and rank LoF-intolerant genes (N ¼ 459

genes)33 and derived an analogous metric for missense var-

iants by assessing the ratio of damaging missense variant

burden to synonymous variant burden in the 1000 Ge-

nomes cohort.We used this metric to rank genes intolerant

to damaging missense variation (N¼ 339 genes). The com-

bined analysis includes all damaging variants found across

curated, ClinVar, LoF-intolerant, and missense-intolerant

gene lists (Table S5). For variant classification and interpre-

tation, a process that is labor intensive and not easily scal-

able, we utilized a bioinformatic approach that prioritized

damaging variants by combining variant quality attributes

with prediction tools to enhance classification (Figure S5).

As a proof of principle, we tested for concordance between

clinical variant interpretation and our bioinformatic

approach using the curated gene list. Of the 549 variants

interpreted clinically, 544 also had bioinformatic interpre-

tation. The bioinformatic approach correctly identified

116 out of 124 P/LP variants as damaging and 108 out

of 114 benign (B)/likely benign (LB) as tolerated

(Figure S5A). Using only the P/LP and B/LB variant calls,

the informatic approach has 94% sensitivity and 95%

specificity (Figure S5A). The damaging variant burden anal-

ysis uses both cohort agnostic and cohort-specific filters

(Figure S5B). As an additional control of the bioinformatic

variant filtering, we assessedmetrics by variant type and by

ancestry on an exome-wide basis (Figure S5C), demon-

strating that at an exome-wide level there is no variant

bias between affected individuals and control individuals.

Assessing damaging variant burden within the ClinVar

gene set highlights the skewed distribution seen across

sub-phenotypes and ancestries (Figure 2). These findings
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correspond to gene-phenotype correlations recognized in

clinical practice and by our manual interpretation of vari-

ants via ACMG guidelines. For example, genes such as

MYH7, FLNC, TNNI3, and TNNT2 have damaging variants

in all sub-phenotypes, although their distribution varies

and TNNI3 damaging variants are again noted as promi-

nent in RCM. Other genes, such as MYBPC3, PKP2, DSP,

and RBM20 predominate in a specific sub-phenotype.

The results also demonstrate that predicted damaging var-

iants in phenocopy genes can be identified.

Excessive damaging burden identified in the cardiac

discovery gene list

We hypothesized that genes involved in cardiomyopathy

would collectively have more damaging variants in the

PCM cohort than in a control group. To address this ques-

tion, we investigated the odds of harboring a damaging

variant in PCM affected individuals compared to 1000 Ge-

nomes participants, as well as in HCM and DCM, the two

sub-phenotypes with the largest numbers (Figure 3). The

odds ratio for damaging variants in PCM is greater than

1000 Genomes, although several confidence intervals

overlap one in the non-European ancestral groups

(Figure 3A). Of note, the magnitude of the odds ratio was

higher for HCM than DCM, consistent with the clinical

findings. We also see higher odds of having a damaging

variant in PCM participants compared to a second control

dataset, SPARK (Figure 3B).42 In the SPARK controls, HCM

again demonstrates a higher magnitude odds ratio than

DCM.

As the comparisons between the PCM cohort and both

sets of control individuals yielded higher magnitude odds

ratio in individuals of European descent, we then

compared the likelihood of having at least one damaging

variant among the curated, ClinVar, intolerant, and com-

bined gene lists within the PCM cohort between European
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Figure 2. Damaging variants in the ClinVar genes clustered by phenotype, ancestry, and gene
Each row represents an individual participant and each column represents a gene. Variants are color-coded as indicated based by their
variant classification. DCM participants are clustered first, followed by those with HCM, LVNC/mixed, non-LVNC mixed, and RCM
cases. Participants with damaging variant findings are shown (226/528 individuals). CH, compound heterozygous (cis/trans configura-
tion unknown); DCM, dilated cardiomyopathy; HCM, hypertrophic cardiomyopathy; LoF, loss of function; LVNC, left ventricular non-
compaction; RCM, restrictive cardiomyopathy.
and African descent individuals (Figure 3C). Individuals of

European ancestry were significantlymore likely than indi-

viduals with African ancestry to have at least one

damaging variant in the curated gene list (OR ¼ 2.18,

p ¼ 0.0054) and an attenuated effect when using the Clin-

Var list (OR ¼ 1.63, p ¼ 0.057). Notably, when including

type of cardiomyopathy as a covariate, the effect is less-

ened for the curated gene list (OR ¼ 1.79, p ¼ 0.046) and

ClinVar (OR ¼ 1.37, p ¼ 0.23). No ancestry differences

were present in the intolerant and combined gene lists.

As the odds ratios are a function of both the rate of the

affected individuals and control individuals, we also evalu-

ated the frequencies of harboring at least one damaging

variant across the gene sets. Given the similarity in the

odds ratios between 1000 Genomes and SPARK, we report
The America
only the 1000 Genomes control individuals. Among the

curated gene list, this bioinformatic approach identified

643 damaging variants in PCM and 1000 Genomes (Table

S5). Of note, there was no overlap of damaging variants

between PCM affected individuals and 1000 Genomes

control individuals except in TTN (Table S5). TTN variants

were the largest contributor to predicted damaging

variants in control individuals (N ¼ 148 unique to 1000

Genomes affected individuals). The rates of harboring a

damaging variant varied considerably across the PCM sub-

types (Figure 4A). Further, there was marked variability

across the ancestries, especially when considering cardio-

myopathy subtype (Figure 4B). Among the ClinVar gene

list (N ¼ 70 genes), we identified 946 damaging variants

in PCM and 1000 Genomes with marked variation in the
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Figure 3. Damaging odds ratios in PCM affected individuals and control individuals
(A) Odds and 95% confidence interval of having a damaging variant in PCM individuals compared to 1000 Genomes control individuals
by gene set and ancestry.
(B) Odds and 95% confidence interval of having a damaging variant in PCM individuals compared to secondary control individuals
SPARK by gene set and ancestry.
(C) Odds and 95% confidence interval of having a damaging variant in PCM individuals of European ancestry compared to PCM indi-
viduals of African ancestry by gene set. The adjusted odds ratios take phenotypic differences into account.
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A Figure 4. Variant burden analysis in car-
diac discovery genes shows enrichment in
the pediatric cardiomyopathy cohort
(A) Variant burden, shown as percentage
of samples with damaging variant(s), in
curated, ClinVar, intolerant, and com-
bined gene sets by phenotype. The per-
centage is shown above each bar and the
number of individuals is shown in paren-
theses on the x axis.
(B) Variant burden in curated, ClinVar,
intolerant, and combined gene sets by
ancestry and phenotype. PCMparticipants
are compared to 1000 Genomes (1000G)
data. Combined, genes present in curated,
ClinVar, missense-intolerant, or LoF-intol-
erant gene lists. DCM, dilated cardiomyop-
athy; HCM, hypertrophic cardiomyopa-
thy; LoF, loss of function; LVNC, left
ventricular noncompaction; PCM, pediat-
ric cardiomyopathy cohort; RCM, restric-
tive cardiomyopathy. *Significant differ-
ence between PCM and 1000 Genomes
(1000G) burden at p < 0.001. p values
are PCM versus 1000 Genomes as per
Wilcoxon rank-sum analysis.
rates across the cardiomyopathy subtypes (Figure 4A) and

curated a higher overall burden among all three ancestries

(Figure 4B). Among the intolerant gene set (missense-

intolerant N ¼ 337 genes; LoF-intolerant N ¼ 457 genes),

our approach identified 663 damaging variants, with

similar rates across the cardiomyopathy subtypes

(Figure 4A). The combined gene set, the union of the

curated, ClinVar and intolerant gene sets, revealed that be-

tween 45 to 77% of individuals with cardiomyopathy

harbored a damaging variant (Figure 4A), with 1,544

unique damaging variants (Table S5). Notably, there was

less ancestral variability in the rates than the other gene

lists (Figure 4B). For the five genes with the highest fre-

quency of damaging variants in the PCM cohort, we map-

ped the location of the variants (Figure S6) and performed

network analysis of the major interactions (Figure S7). Not
The American Journal of Human Gen
surprisingly, damaging variants are

localized in major gene domains.

Analyses of the presence or absence

of at least one rare variant may miss

the impact of multiple damaging

hits. To examine this in more detail,

we compared the number of individ-

ual-level damaging variants in affected

individuals to 1000 Genomes control

individuals across gene lists, ances-

tries, and HCM or DCM sub-pheno-

types (Figure 5). Multiple damaging

variants (more than one per individ-

ual) were more common in the PCM

cohort than in control individuals,

especially for two or three predicted

damaging variants, across PCM sub-
types (Figure 5). As an additional control for variant burden,

we examined the damaging variant burden of 1,000 sets of

randomly selected genes (done for each of the four gene

lists) and compared it to the burden of damaging variants

observed in each of our gene lists (Figure S8). In general,

we observe a higher percentage of individuals with zero or

singleton variants in random genes compared to selected

genes. When comparing these distributions statistically,

we find that the upper end of the distribution (75th and

90th centiles) consistently exhibited enrichment for the

curated, ClinVar, and cardiac discovery gene lists (p <

0.0001, Table S6).

Overall, using this bioinformatic approach, we were able

to identify damaging variants in an additional 33% of indi-

viduals with pediatric cardiomyopathy (Figure 6). In partic-

ular, candidate genes within the intolerant gene set
etics 109, 282–298, February 3, 2022 291



Figure 5. Proportion of individual-level predicted damaging variants by phenotype, ancestry, and gene list
Percentages of one, two, three, or four hits across ancestries (EUR, AMR, and AFR). Combined, genes present in curated, ClinVar,
missense-intolerant, or LoF-intolerant gene lists. DCM, dilated cardiomyopathy; HCM, hypertrophic cardiomyopathy; LoF, loss of
function; LVNC, left ventricular noncompaction; PCM, pediatric cardiomyopathy cohort; RCM, restrictive cardiomyopathy.
putatively contribute to European ancestry disease for

both HCM andDCM and to African American ancestry dis-

ease for DCM but do not appear to contribute to admixed

American disease in this sample set (Figure 4). Taken

together, the results indicate an enriched gene variant

burden in PCM participants and suggest that these infor-

matic approaches are useful to delineate additional vari-

ants contributing to pediatric cardiomyopathy.
Discussion

While genetic studies have made great strides in identifying

the genetic contributions to cardiomyopathy, these studies

have largely been restricted to adults or small pediatric

studies. Thus, there is a critical need to evaluate the genetic

architecture of pediatric onset cardiomyopathy. To address

this issue, we assembled a cohort of 528 children with pedi-
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atric cardiomyopathy. We found that while clinical genetic

testing of children is warranted, continued research is

required to expand the number of clinically actionable var-

iants especially for CM subtype, early age of onset, and indi-

viduals with non-European ancestry. We came to this

conclusion based on the following: (1) 32% of the children

had a clinically actionable variant with the most common

genes shared between pediatric and adult cases; (2) the rates

of clinically actionable variants varied by cardiomyopathy

subtype, age of onset, and ancestry; and (3) evidence of

rare damaging variant burden, which varied by cardiomy-

opathy subtype and ancestry.
Clinically actionable variants identified in pediatric CM

and impact of sub-phenotype

We found that 32% of pediatric onset cardiomyopathy par-

ticipants had at least one clinically actionable variant.
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Figure 6. Analysis of cases explained by
variants in exomes
(A) Percentage of cases explained with
ACMG evaluation and informatic predicted
damaging variants.
(B) Venn diagram of cases explained with
ACMG evaluation and informatic predicted
damaging variants. Values are number of
cases.
However, the rates of clinically actionable variants differed

markedly by cardiomyopathy subtype, consistent with

adult studies.8,43,44 Identification of molecular disease

causation in a family is not always static and it may evolve

with changing status of affected individuals in the family

and with updates in variant interpretation. Revisiting our

variant interpretation dataset of LP/P variants frozen in

2019, we identified ten (7.9%; Table S1) that were down-

graded to VUS primarily as a result of updates to ClinVar.

Five of these were in MYH7 based on ClinGen revisions

to PM1 and PS4 evidence, reinforcing the recommenda-

tions for periodic re-evaluation.45,46 We note, however,

that we were unable to assess or update familial segregation

for these variants, evidence which could have confirmed

an interpretation of LP. Cardiomyopathy-associated genes

continue to be added to ACMG gene list recommendations

for return of secondary findings for exome and genome

testing.47 This further supports careful adjudication of

variants and the importance of understanding molecular

disease causation in the pediatric population.

MostP/LPfindingsacross thecardiomyopathysub-pheno-

types aremissense variants; far fewer LoF variants were iden-

tified. Notable exceptions include LoF variants in MYBPC3

for HCM and in TTN for DCM. Interestingly, nearly equal
The American Journal of Human Ge
numbers of missense and LoF variants

in MYBPC3 were identified in children

with HCM. In adults, LoF variants pre-

dominate.48 In children with DCM,

only missense variants were found in

MYBPC3. Although RBM20 variants

have previously been identified as over-

represented in children,11,49 we found

only 1.8% of the DCM cohort with P/

LP variants, a yield very similar to adults.

Overall, HCM and DCM had a similar

variant burden. Interestingly, MYBPC3

variants were not a genetic cause of

RCM in our cohort, and TNNI3 variants

explain 30% of cases.

Truncating variants in TTN (TTNtv)

are established causes of DCM and the

most commonly identified molecular

cause in adults.29 Age and sex are both

known to impact penetrance. In chil-

dren, reports of TTNtv are primarily

from smaller studies and vary from

�2%–13% with authors reaching
different conclusions about the importance of TTN testing

in younger children.22,49–53 Pugh et al. identified causative

TTN variants in a cohort of children but not infants

(age 0–2), and TTN variants are the largest cause of DCM in

2–18 year olds.49 They reported 10% (95% CI, 5.5%–

30.6%) P/LP variants in TTN, though their sample size was

small (n¼ 29). Another report of DCM in the young showed

three of51children (6%)withDCMat age< 15hadTTNvar-

iants, although one affected individual had a congenital

heart defect contributing to heart failure. In contrast, TTNtv

in15–21year-olds comprised23%(7/31)of the affected indi-

viduals.50 The highest yield was found in a recent study of

pediatric DCM children in China, with 13% (6/46) children

with pathogenicTTNtv,with childrenhaving an average age

of 6.5 years. Of the 279 children with DCM in our study,

3.2% had TTNtv, which is at the lower end of previously re-

ported rates. Our variant interpretation focused exclusively

on TTNtv, so it is possible that some P/LP variants have

been missed, though previously published work also often

focused on TTNtv. Overall, we had a lower familial rate of

DCM cases in our cohorts than many studies and this may

contribute to a decreased yield. We conclude that TTNtv

are an important cause of DCM in pre-pubertal children,

albeit at frequencies lower than those seen in adults.
netics 109, 282–298, February 3, 2022 293



This information on genetic test results across pediatric

age ranges and cardiomyopathy subtypes adds important

evidence for current expert guidelines on the use of genetic

testing in children.12 A positive finding in affected children

has important implications for familymembers who can be

risk-stratified by the presence or absence of the familial

variant. A diagnostic finding in an affected child provides

the opportunity for cost savings and reduced health care

useby familymembers; rather thanongoing cardiac surveil-

lance screening in all first-degree relatives, only those

testing positive for the familial variant require surveillance.

Future studies could address cost-savings prospectively.Our

resultsmost likely represent aminimumestimate, given the

number of genes analyzed, although studies have indicated

that expanded clinical panels offer limited additional sensi-

tivity, at least forHCM.11 Finally, it is notable that themean

age of our HCM cohort, which was the oldest sub-pheno-

type among our cohort, was 11.1 years, highlighting the

benefit of early genetic testing and cardiac surveillance

and providing strong data to support a more recent recom-

mendation for screening at earlier ages.12,40,54

Early age of onset exhibits reduced occurrence of

diagnostic molecular findings

We found that nearly 20% of cardiomyopathy affected

individuals with diagnosis in infancy had a diagnostic ge-

netic finding as compared to nearly 40% of non-infants.

Given that infant presentation was common (36%) at

the tertiary centers our study was based on, the lower

rate is notable. This trend was consistent across cardiomy-

opathy sub-phenotypes in the 37 tested genes, suggesting

that novel causes remain to be identified in this popula-

tion. Of note, our study was designed to assess idiopathic

and familial cardiomyopathy and children with identifi-

able syndromic, neuromuscular, or metabolic causes

were excluded. However, these presentations can be diffi-

cult to ascertain in infants and may be missed. Our assess-

ment of phenocopy genes such as those causing Danon

disease, glycogen storage disease resulting from variants

in PRKAG2, RASopathies, and other causes of pediatric

cardiomyopathy identified a small number of cases, and

it will be important to assess other metabolic or syn-

dromic causes of disease that might explain additional

cases in our infant cohort in future studies. Small studies

suggest that multiple pathogenic variants in sarcomeric

genes may explain earlier onset of disease in infants,14,

15 but our results do not support this, identifying only

1.3% of individuals (n ¼ 7) with two or more P/LP vari-

ants in these well-established cardiomyopathy genes, of

which only one was an infant. These data suggest that

additional research into the causes of infant-onset cardio-

myopathy is needed.

Need for additional gene discovery—Evidence of

increased rare variant burden

Using clinical interpretation standards, 32% of PCM chil-

dren had P/LP variants, suggesting that there is substan-
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tial room for improvement, especially given that 36%

had a positive family history. Using bioinformatic predic-

tion, the enriched burden seen in our larger gene lists

suggests that increasing burden of damaging variants

across multiple genes is observed in some cases. We

find in our cohort that bioinformatic predictions of

damaging variants in candidate cardiomyopathy genes

offer the potential to expand yield by up to 33%. While

few individuals harbored more than one actionable

variant from the curated or ClinVar gene lists, when ex-

panding the gene list, individuals with cardiomyopathy

often carry multiple damaging rare variants. Thus, while

some cardiomyopathy is inherited in an autosomal

dominant manner, it is possible that multigenic inheri-

tance may contribute to some cases. Taken together,

these results add to the understanding of the genetic ar-

chitecture of PCM and indicate opportunities for novel

gene discovery.11

We used a systems biology method to compile candi-

date gene lists leveraging the rich amount of information

available related to heart function and we used bio-

informatic variant effect classification to assess damaging

variant burden. Such approaches should be applied with

caution, as there is high risk of findings that are not inde-

pendently causal. Specifically, clinical evaluation of vari-

ants based on ACMG guidelines incorporates multiple

lines of evidence for each variant. In contrast, the bio-

informatic approach performs variant classification by

combining variant quality attributes with prediction

tools like CADD and Meta-SVM and therefore estimates

pathogenicity on the basis of molecular effect. Impor-

tantly, our bioinformatic-based prediction of variants ex-

hibited consistency with the P/LP and B/LB calls from

clinically interpretation. Using bioinformatics, we also

identified damaging variants among those interpreted

as VUSs by using clinical evaluation. While a damaging

prediction should not be viewed as causal, visualization

by heatmap of the ClinVar gene set (Figure 2) highlights

gene-phenotype and gene-ancestry specific features. Such

analyses may be useful for historically difficult to classify

variants such as those in RYR2 or SCN5A. Genes with

damaging variants that are over-represented in specific

ancestries, such as MYPBC3 in European or MYH6 in

non-European, require further investigation. Thus, the

bioinformatics approach and visualization of burden

across a large pediatric cardiomyopathy cohort may pro-

vide important information to help guide molecular ge-

netic classification of variants.

Need for diversity inclusion: Differences by ancestry

Using a bioinformatic approach to assess the burden of

damaging rare variants in known cardiomyopathy genes

and candidate genes, we found that individuals of Euro-

pean descent had increased damaging variant burden as

compared to individuals of admixed American or African

American ancestry. Most gene discovery efforts have

been completed in European descent populations and
y 3, 2022



failure to use ancestry-matched controls can result in

misinterpretation of variants.55 Analyses of diverse bio-

banks have also identified that participants of African

ancestry had more VUSs in the 30 ACMG cardiac action-

able genes than those of European ancestry.56 Our data

support shared genetic influences across ancestral groups

while also suggesting that some causal variants may be

ancestry specific. Notably, we found that damaging vari-

ants in MYBPC3 were absent among individuals of African

American ancestry across all sub-phenotypes, and

although our numbers of African American children with

HCMwere small (n¼ 18), the result was statistically signif-

icant. A study of South Africans reported a markedly lower

genetic diagnosis rate for HCM (29%), although the study

size was small.57 As MYBPC3 accounted for 23% of our

HCM cohort, these results support the premise that undis-

covered genes contribute to PCM in individuals of African

descent. It is also possible that there are modifier loci

whose frequencies vary by ancestry. Indeed, two recent in-

vestigations highlight genetic variants in BAG3 in African

Americans (but not Europeans) with cardiomyopathy that

modify heart failure outcomes.58,59 With the goal of iden-

tifying candidate genes, we created our intolerant gene set.

In contrast to the curated and ClinVar gene sets, in which

children of European ancestry were more likely to harbor

damaging variants than those of African ancestry, using

the intolerant gene set, individuals of African ancestry

had similar damaging variant burden. Thus, these genes

represent plausible candidates for ancestry-specific or

ancestry-enriched variant burden. Most of the intolerant

genes with burden in the PCM exomes (N ¼ 201 genes)

were enriched in abnormal heart morphology genes as

per mouse models (66.1%, 133/201 genes, p < 0.001)

and human heart development (42.3%, 85/201 genes,

p < 0.001). Few of these genes were enriched in sarcomere

cellular component (14.4%, 29/201 genes, p < 0.001) or in

myofibrils (14.4%, 29/201 genes, p < 0.001). Only 13 of

201 intolerant genes were in the ClinVar gene set. These re-

sults highlight the need for gene discovery efforts on

diverse populations.

Conclusion

In summary, this multi-site study of primary PCM children

in North America demonstrates that while the genes iden-

tified from the primarily adult genetic studies on cardio-

myopathy provide clinical value, there is room for

improvement. Specifically, our results suggest that the

expansion of more diverse study populations including in-

fants and individuals with non-European ancestry will be

essential to improve diagnostic genetic testing yields.

Further, the demonstration of increased rare damaging

variant burden suggests the need to consider additional

genes as well as multigenic inheritance models. We expect

that this large pediatric cohort will provide pediatricians

the evidence required to support broad clinical genetic

testing and researchers’ opportunities to examine novel

genetic contributions.
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