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ABSTRACT

Exome sequencing is widely used in genetic studies
of human diseases and clinical genetic diagnosis.
Accurate detection of copy number variants (CNVs)
is important to fully utilize exome sequencing data.
However, exome data are noisy. None of the existing
methods alone can achieve both high precision and
recall rate. A common practice is to perform heuristic
filtration followed by manual inspection of read depth
of putative CNVs. This approach does not scale in
large studies. To address this issue, we developed
a transfer learning method, CNV-espresso, for in sil-
ico confirming rare CNVs from exome sequencing
data. CNV-espresso encodes candidate CNVs from
exome data as images and uses pretrained convolu-
tional neural network models to classify copy number
states. We trained CNV-espresso using an offspring–
parents trio exome sequencing dataset, with inher-
ited CNVs as positives and CNVs with Mendelian
errors as negatives. We evaluated the performance
using additional samples that have both exome and
whole-genome sequencing (WGS) data. Assuming
the CNVs detected from WGS data as a proxy of
ground truth, CNV-espresso significantly improves
precision while keeping recall almost intact, espe-
cially for CNVs that span a small number of exons.
CNV-espresso can effectively replace manual inspec-
tion of CNVs in large-scale exome sequencing stud-
ies.

INTRODUCTION

Copy number variation refers to >50 bp deletion and du-
plication in the human genome (1,2). Copy number vari-
ants (CNVs), especially for rare CNVs, have been impli-

cated in human diseases and phenotypic diversity (3–6).
CNVs can be identified by many genomic technologies such
as fluorescent in situ hybridization, array comparative ge-
nomic hybridization, single-nucleotide polymorphism ar-
ray, next-generation sequencing (NGS) and long-read se-
quencing technologies (2,7–9). Among NGS technology,
exome sequencing technology only performs sequencing on
the coding regions that account for ∼2% of human se-
quence. Exome sequencing has the advantages of high ef-
ficiency, low cost and less storage spaces compared with
whole-genome sequencing (WGS) technology. Therefore,
exome sequencing is widely used as the main sequencing
approach by numerous genomic studies of human diseases
(10–12). Recently, many exome sequencing-based CNV de-
tection methods have been developed (13–23). However, the
accuracy of CNV detection from exome sequencing data
is challenging, especially for small CNVs. The number of
CNVs predicted by different methods varied from several
to hundred CNVs per sample in which many of them are
inconsistent calls (16,24,25).

To achieve a better performance, a common approach is
to call CNVs from exome data using one or multiple meth-
ods, followed by empirical filtering based on summary met-
rics from these methods and then manual visualization of
read pileups in regions that harbor candidate CNVs. This
approach does not scale in studies with large sample size
where manual inspection of a large number of candidate
CNVs can be extremely time consuming (26–28). Further-
more, the quality of the manual inspection method is de-
pendent on the experience of investigators, but even expe-
rienced investigators may make inconsistent judgments in
different settings or times.

Here, we describe a new method, CNV-espresso, that
can perform in silico confirmation of candidate rare CNVs
by the same read depth summary figures used for man-
ual visualization. The core model of CNV-espresso is a
deep convolutional neural network (CNN). We represent a
candidate CNV by an image showing the normalized read
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depth of the carrier sample and its corresponding refer-
ence samples. CNV-espresso uses CNNs pretrained by a
large amount of image data (29) to perform transfer learn-
ing for predicting copy numbers as a classification ques-
tion. In this study, we used a large-scale family-based ex-
ome sequencing dataset to create training data and evalu-
ate the performance on samples with both exome sequenc-
ing and WGS data. We investigated whether CNV-espresso
can improve accuracy beyond common empirical filters and
how the improvement depends on the size and type of
CNVs.

MATERIALS AND METHODS

Overview

Figure 1 shows the overall workflow of this study. We con-
struct training data by leveraging Mendelian inheritance of
offspring–parents trio exome sequencing data. The core of
CNV-espresso is a deep CNN model. We perform transfer
learning on a pretrained image recognition model (29) using
the constructed CNV, and then evaluate the performance of
CNV-espresso on exome samples with WGS data as proxy
of ground truth. We illustrate the overall workflow of CNV-
espresso in Figure 1.

Samples and CNV calling

We obtain exome sequencing data from 27 270 family-
based samples in the autism spectrum disorder cohort (Si-
mons Foundation Powering Autism Research for Knowl-
edge, SPARK) (12). The samples are processed with cus-
tom NEB/Kapa reagents, the IDT xGen capture platform
and sequenced on the Illumina NovaSeq 6000 system by Re-
generon. Sequence reads are aligned to the human reference
genome hg38.

We identify CNVs from exome sequencing data by us-
ing XHMM (13), CANOES (16) and CLAMMS (19),
three CNV callers that have different statistical models. We
use principal component analysis to illustrate samples and
check whether the read depth signals of these samples have
been significantly affected by batch effects. After passing
the batch effect inspection, we randomly split samples into
10 groups (for XHMM and CANOES) or two groups (for
CLAMMS) according to the computational complexity of
different CNV callers. Note that in the random grouping
process, we require members in the same trio to be assigned
to the same group for CNV calling. In this study, we use
all default parameters in CANOES and CLAMMS. For
XHMM, we appropriately adjust the ‘–maxTargetSize’ pa-
rameter to keep 12 capture target probes >10 000 bp not
being excluded as outliers. Except that, we keep all other
parameters by default.

In addition to the 27 270 exome sequencing samples men-
tioned above, we also obtain additional 569 individuals with
both exome sequencing and WGS data from SPARK (12).
For these 569 individuals, we apply XHMM (13), CANOES
(16), CLAMMS (19) and CODEX (30) to call putative
CNVs from exome sequencing data. We limit the analysis to
the rare CNVs (≤1% in the cohort) with two or more tar-

gets in the downstream analysis. Furthermore, we exclude
CNVs with >75% of their intervals located in the segmen-
tal duplication regions. Here, segmental duplications refer
to genomic duplications ≥1000 bp and ≥90% identity in
the human reference genome (31). To get a compatible re-
sult from four different exome CNV callers, we further limit
our analysis to autosomes. We use Canvas (32) and Manta
(33) to identify CNVs from WGS data with default software
parameters. We filter the raw CNV calls from Canvas and
Manta by recommended quality control criteria. Specifi-
cally, we exclude CNVs with quality scores <7 in Canvas’ re-
sults; we only keep deletions and duplications located on au-
tosomal and sex chromosomes (exclude any predicted vari-
ants on contigs) in Manta’s results. In addition, we require
‘PASS’ in the ‘FT’ field of the VCF file, which indicates that
all the filters of Manta have passed for the corresponding
sample.

Training data

For these 27 270 exome sequencing samples from
the SPARK cohort (12), we use XHMM (13), CANOES
(16) and CLAMMS (19), three exome CNV callers that
have different statistical models, to call candidate CNVs.
To obtain training data without large-scale confirmation
experiments, we use the Mendelian rule of inheritance
to construct a high-confidence CNV call set. Specifically,
in each family, we assume that most of CNVs called in
both offspring and at least one parent that pass baseline
quality filters are true positives and use these inherited
calls as true rare deletions or duplications in the training
of CNV-espresso. CNVs called only in offspring but not in
either parent are Mendelian errors. These Mendelian error
calls include false positives in offspring, false negatives in
parents and true de novo CNVs. To refine the Mendelian
error calls, we use baseline quality metrics to remove false
negatives in parents. For instance, we require ‘NQ’ (a sta-
tistical quality score to reflect the Phred-scaled probability
that none of the targets in this region have a CNV) (13)
in both parents to be greater than a stringent threshold
to achieve high probabilities of no CNVs in these regions.
Meanwhile, based on recent studies, the real de novo CNV
rate in the human genome is very low (34–36). To minimize
the chance of uncertainty in the training data, we further
exclude candidate CNVs identified by multiple callers,
since we find that CNVs identified by multiple callers are
likely to be real (Supplementary Figure S1). Then, we
assume that most of the remaining Mendelian errors are
mainly composed of false positives in offspring and we use
these refined Mendelian error calls as artifacts for training.
We list the detailed filtering approaches, quality scores
and the thresholds used in this process in Supplementary
Table S1. CNV-espresso is designed to confirm rare CNVs.
Therefore, we exclude CNVs with a frequency over 1% in
the cohort. As candidate CNVs came from three callers,
we first group the overlapping candidate by CNV types
and genomic coordinates, and then resolve the breakpoint
conflicts by analyzing the read depth ratios between the
inside of CNV regions and CNV boundary regions for all
possible breakpoints. We process the merging steps by an
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Figure 1. The workflow of CNV-espresso.

external tool (25) and merge different sources of CNV calls
into a unified call set.

Read depth calculation and GC content normalization

To avoid the additional variance caused by the extremely
long (≥1000 bp) exome capture targets, we first divide those
extremely long targets into several equal size 500–1000 bp
windows (referred to as ‘target’ in the manuscript). This ap-
proach can also benefit to confirm CNVs located at a part
of the long target regions (19). We then employ Mosdepth
(37) to calculate the read depth signal for each target of each
sample. Users can also use other read depth generators to
perform calculations or even directly take the read depth
files from CLAMMS as input. It is well known that the real
CNV signals in the exome sequencing data are significantly
affected by noises. The noise signals include GC content,
sample mean coverage, target size, target mean coverage,
CNV frequency in the population, batch effects, etc. (13).
These factors can affect read depth signal globally or lo-
cally. Among them, GC content and sample mean coverage
are known to affect the read depth signal globally. Thus, we

normalize the GC content and sample overall coverage for
each sample by a median approach as

Ot =
(

RDt × M
Mx

)
/M̄, (1)

where RDt is the raw read depth at the tth exon. Mx is the
median read depth value of all exons with the same GC con-
tent x as the exon and M is the overall median read depth
of all exons in a sample, while M̄ is the overall mean read
depth of all exons in a sample. Ot is the normalized read
depth value of the exon. Supplementary Figure S2 shows
the read depth signal before and after GC content normal-
ization.

Reference sample selection

For other known and unknown factors locally affecting
read depth signals, we assume that these factors contribute
equally on the same batch of samples in the given genomic
regions. A rare CNV in a case sample will lead to differ-
ent normalized depth compared to other samples (as ‘refer-
ence’ samples) that have overall similar depth profile to the
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case sample. For instance, previous studies successfully de-
tected rare CNVs by assuming the normalized number of
read counts or read depth values in exome target regions
follow a negative binomial or similar distributions (15,16).
Inspired by these methods, we calculate the correlation co-
efficients of the case with other samples and select the 100
(by default) highest pairwise correlation samples as refer-
ence samples.

Image encoding

For each CNV candidate predicted by CNV callers, we en-
code the read depth signals of the case and its correspond-
ing reference samples into an image. The X-axis of the im-
age refers to the CNV coordinate in the human genome and
the Y-axis of the image refers to the normalized read depth
value. To avoid image abnormalities caused by the fluctua-
tions in distance changes between adjacent targets, we take
the logarithmic transformation for the differences between
two adjacent targets on the X-axis and the normalized read
depth values of all exons on the Y-axis as equations (2) and
(3), respectively:

x′
t = x0 +

∑t

t=1
loge (1 + (xt − xt−1)), (2)

y′
t = loge (1 + yt) , (3)

where xt is the genomic coordinate at the middle of tth exon
and yt refers to the normalized read depth value at tth exon.
To avoid the undefined error, we use the natural logarithm
of one plus the input in the transformation.

In the image, each dot refers to a target region, and
we connect every two adjacent dots of the sample with a
straight line. We use two RGB colors to distinguish the case
and reference of samples. Here, we use blue for the case sam-
ple and gray for reference samples and use Matplotlib (38)
library in Python to implement the encoding process. Thus,
we convert the CNV confirmation task into an image clas-
sification question.

Transfer learning

In this study, we leverage the transfer learning and fine-
tuning strategy to in silico confirm rare CNV calls from ex-
ome sequencing data. As requested by the pretrained base
model, we resize our input CNV images to 224 × 224 pixels.
Given that the purpose of our study is to train a three-class
(rare deletion, rare duplication and artifacts) deep learning
classifier, we exclude the top layer of MobileNet as the base
model, and then add a global average pooling layer and a
dense layer with Softmax activation function.

We apply the recommended transfer learning and fine-
tuning procedures by Keras official developer guides (https:
//keras.io/guides/transfer learning/). Specifically, we first
take layers from the pretrained MobileNet base model and
freeze all the weights as nontrainable to avoid destroying
any of the information they already contained. Then, we
train the weights of newly added layers using our labeled
dataset. Once the model converges, we set all the weights of
the model trainable and retrain the whole model end-to-end
with a very low learning rate (10e−5) by Adam optimizer

(39). We train the CNN model in batches of 32 images for up
to 20 epochs on a GPU server (GeForce GTX 1080 GPU,
8119MiB RAM). Early stopping is set by monitoring the
value of ‘loss’ and three epochs with no improvement after
which training will be stopped. We select the model with the
highest accuracy in the testing data as the final model.

Evaluation metrics

We evaluate the performance of the method using with-
hold testing data and additional independent test datasets.
Specifically, we use the refined model to predict the proba-
bilities of the three copy number states (rare deletion, rare
duplication and artifacts). We select the state correspond-
ing to the maximum probability value as the predicted la-
bel. We treat a CNV as true positive if its predicated label
matches the corresponding label. We count any true CNVs
without a matched predicted label as false negatives, while
any predicted CNVs without a matched true label as false
positives. We evaluate the performance of CNV-espresso by
using precision, recall, F1 score and area under the curve
(AUC).

RESULTS

Model training

We generated a dataset with 22 008 CNVs called from ex-
ome sequencing data of the SPARK project (see the ‘Mate-
rials and Methods’ section), including 10 354 rare duplica-
tions, 5180 rare deletions and 6474 likely artifacts (Figure
2A). Figure 2B shows the distribution of the size of CNV
calls defined as the number of exome capture targets (re-
ferred to as ‘number of targets’). We randomly partitioned
the data into training (60%), validation (20%) and testing
(20%) data. Then, we encoded each CNV call as an image.
Figure 3 shows the images of a rare deletion and a rare du-
plication as examples.

We leveraged the transfer learning approach, taking pre-
trained models learned from computer vision datasets on
our exonic CNV confirmation task. We considered three
pretrained CNN models: a generic CNN model, MobileNet
v1 (29) and ResNet50 (40). The generic CNN model in-
cludes six convolutional layers, and it can achieve 0.84 ac-
curacies on the CIFAR-10 dataset (41). MobileNet and
ResNet have been successfully applied to genomics recently
(26,42). Overall, all three models achieved acceptable clas-
sification performance. Among them, MobileNet achieved
the highest performance with minimum parameters (Table
1). Therefore, we selected MobileNet as our transfer learn-
ing base model in the following analysis.

After the transfer learning and fine-tuning steps (see
the ‘Materials and Methods’ section), we evaluated the per-
formance of the refined model in the testing data. The over-
all F1 score is 0.92, and the model achieves an AUC of
the ROC curves at 0.99 (Figure 2C). The confusion matrix
showed that our model can successfully classify most of the
rare duplications, rare deletions and artifacts (Figure 2D).

To illustrate the relationship between CNV size and the
performance of our model, we grouped the CNVs in the
testing data into three categories according to the num-
ber of targets and evaluated our model on CNVs in each
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Figure 2. The distribution of CNVs and the model performance on the SPARK dataset. (A) The distribution of CNVs with different labels. (B) The
distribution of labeled CNVs with different numbers of exome capture targets. Here, the number of targets can be used as the metric of CNV size. We
shuffled the dataset and split CNVs into random training (60%), validation (20%) and testing (20%) data. (C) The receiver operating characteristic (ROC)
curve of MobileNet after transfer learning and fine-tuning steps. The AUC of the ROC curve is added as a legend. (D) Confusion matrix. The true and
predicted labels include rare duplication (Rare DUP), rare deletion (Rare DEL) and artifacts.

Figure 3. Representative images for CNV predictions. (A) Rare deletion. (B) Rare duplication. In the images, the case samples are encoded in blue (Hex
code: #0000FF) and the reference samples are encoded in gray (Hex code: #808080).

Table 1. Performance comparison and details of three CNN models

Model Depth # Parameters Accuracy (95% CI) F1 score (95% CI) GPU time

A generic CNN 16 22 292 643 0.912 (0.90, 0.92) 0.912 (0.90, 0.92) 12
MobileNet v1 90 3 231 939 0.914 (0.90, 0.93) 0.915 (0.90, 0.93) 12
ResNet50 178 23 593 859 0.606 (0.39, 0.83) 0.603 (0.38, 0.82) 11

We calculated the mean (95% confidence interval, CI) accuracy, F1 score and GPU time in minutes in training data with 5-fold cross-validation.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkac788/6702465 by C

olum
bia U

niversity user on 17 Septem
ber 2022



6 Nucleic Acids Research, 2022

group. The performance is slightly better for large CNVs
than small CNVs (Supplementary Figure S3). We also eval-
uated the model on deletions and duplications separately.
Supplementary Figure S4 shows that the model achieved
good performances on both deletions and duplications.

Although the training data are mildly imbalanced (Fig-
ure 2A), the learning process is well behaved (Supple-
mentary Figure S5). To test whether balanced train-
ing data improve results, we used a downsampling ap-
proach to randomly select a subset of majority classes
(rare duplication and artifacts) and construct balanced
datasets. The model trained by the balanced set does not
show improvement over the original model (Supplementary
Figure S6).

Performance of in silico confirmation of CNVs

WGS data have effectively complete coverage of genomic re-
gions and more even coverage than exome sequencing data.
Therefore, high-confidence CNVs identified from WGS
data of the same individuals can be used as an approxi-
mate gold standard to assess the accuracy of CNVs called
from exome data. In this study, we assessed the perfor-
mance of CNV-espresso on 569 individuals with both ex-
ome sequencing and WGS data. For these 569 individu-
als, we used XHMM (13), CANOES (16), CLAMMS (19)
and CODEX (30) to call putative CNVs from exome se-
quencing data, and then used Canvas (32) and Manta (33)
to identify CNVs from WGS data (see the ‘Materials and
Methods’ section). Given that Canvas and Manta are two
complementary CNV callers in terms of different input sig-
nals and statistical models, we took the union of the high-
confidence CNVs identified by the two callers as the stan-
dard dataset. We treated each CNV prediction from ex-
ome sequencing data as true or false based on whether
at least 50% of the prediction in length overlaps with the
corresponding one in the standard dataset. We estimated
the precision of each method for exome data and the cor-
responding CNV-espresso filtered results as the true posi-
tives divided by all positives from the method. To estimate
recall, we defined the total true positives as the union of
CNV calls from exome data that have support from Can-
vas or Manta from WGS data. Figure 4 shows that CNV-
espresso can improve the precision for all methods without
incurring a substantial loss of recall. Consistently, CNV-
espresso improved F1 score for all methods except CA-
NOES. We note that CODEX was not used in construct-
ing training data for the model. Supplementary Figure S7
showed that CNV-espresso can substantially exclude false-
positive CNVs and improve the precision for calls made by
CODEX.

We further investigated how CNV-espresso improves the
results of XHMM when combined with its recommended
quality score filtering approach. A commonly used method
to filter XHMM calls is to set an SQ (genotype quality)
threshold (a recommended value is 60). CNV-espresso im-
proves the precision and overall performance of XHMM
call sets with SQ thresholds at both 0 and 60 (Supplemen-
tary Figure S8). The improvement is more pronounced for
small CNVs.
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Figure 4. Overall performance comparison between original calls and in
silico confirmation by CNV-espresso. XHMM, CANOES, CLAMMS and
CODEX were used to call CNVs from exome sequencing data of 569 in-
dividuals. Canvas and Manta were used to call CNVs from WGS data of
the same individuals. The union of all CNV calls from exome data that
overlap with calls from WGS data was considered true positives. The calls
from exome data that do not have support from WGS data were consid-
ered as false positives. The circles indicate CNV calls from corresponding
CNV callers before (without color) and after (colored in green) in silico
confirmation by CNV-espresso. The contour lines indicate the F1 score as
the harmonic mean of the precision and recall.

Results on the experimentally validated dataset

To assess our model’s compatibility under different capture
kits and experimental batches, we applied CNV-espresso to
in silico confirm CNVs on a real experimentally validated
dataset from a congenital heart disease study (43). We ob-
tained 24 true positive CNVs validated by digital droplet
polymerase chain reaction (ddPCR). The corresponding ex-
ome sequencing samples of these 24 CNVs were captured
by Nimblegen SeqCap Exome V2 chemistry and sequenced
on the Illumina HiSeq 2000 platform. Sequence reads were
aligned to the human reference genome hg19 as described
(43,44). We used our trained model to validate the CNV
predictions for these 24 true CNVs. We found that CNV-
espresso can successfully confirm 23 of the 24 CNVs previ-
ously picked up by exome sequencing technology with a true
positive rate of 96% (Supplementary Table S2). We investi-
gated the CNV call (a deletion) that was inconsistent with
the experimental result. As shown in Supplementary Fig-
ure S9, the evidence from read depth supporting a true dele-
tion in the offspring is weak. Additionally, the allele fraction
data are inconsistent with a germline deletion. Therefore, it
is challenging to confirm this deletion even by manual in-
spection.

DISCUSSION

In this study, we present a new deep transfer learning
method, CNV-espresso, for in silico confirming CNV pre-
dictions from exome sequencing data. In genomic stud-
ies using exome sequencing data, an indispensable step in
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CNV analysis is to manually visualize the images of putative
CNVs that contain visual information about read depth.
The core idea of CNV-espresso is to use deep learning mod-
els optimized for image recognition to capture implicit log-
ics in manual visualization by humans. For each CNV can-
didate predicated by exome sequencing-based CNV callers,
CNV-espresso encodes normalized read depth signal for the
sample of interest and selected reference samples into an
image. Then, CNV-espresso adopts transfer learning with
a pretrained CNN model and fine-tuning the model by a
large-scale trio exome dataset. We evaluate the performance
of CNV-espresso on an independent dataset with both ex-
ome sequencing and WGS data and an experimentally vali-
dated dataset. Our results show that CNV-espresso can im-
prove the precision for different exome sequencing-based
CNV detection methods without incurring a substantial
loss of recall. It can perform robustly on confirming both
deletion and duplication. Furthermore, CNV-espresso can
successfully in silico confirm CNV predictions among dif-
ferent size categories. Importantly, CNV-espresso can suc-
cessfully confirm small CNVs with only a few targets, which
is currently one of the biggest challenges in calling CNVs
with exome area. Finally, our results also show that CNV-
espresso can work compatibly with different capture kits
and experimental batches and achieve a high true positive
rate with ddPCR experimental results.

There are several limitations to our study. First, the main
signal used by CNV-espresso is the depth contrast between
the sample of interest and a selected set of reference sam-
ples. The presence of the same CNV in the reference samples
would decrease the signal. Therefore, CNV-espresso is opti-
mized for confirming rare CNVs. Second, CNV-espresso is
designed to confirm CNV calls made by other methods. It
can reduce false positives without substantial loss of sensi-
tivity, and by design the model itself cannot improve sensi-
tivity.
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//base.sfari.org (application required).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We thank Dr Haicang Zhang, Joseph U. Obiajulu, Dr
Chang Shu, Dr Bingsong Zhang and Jiayao Wang for help-
ful discussions.
The SPARK initiative is funded by the Simons Foundation
as part of SFARI. We are extremely grateful to the thou-
sands of individuals and families who are participating in
SPARK. We wish to thank the sites, staff and volunteers
of the SPARK Clinical Site Network and SFARI for their
invaluable contributions.

FUNDING

National Institutes of Health [R01GM120609 and
R03HL147197]; Simons Foundation [SIMONS606450].
Funding for open access charge: National Institutes of
Health.
Conflict of interest statement. The authors declare that they
have no competing interests.

REFERENCES
1. Conrad,D.F., Pinto,D., Redon,R., Feuk,L., Gokcumen,O., Zhang,Y.,

Aerts,J., Andrews,T.D., Barnes,C., Campbell,P. et al. (2010) Origins
and functional impact of copy number variation in the human
genome. Nature, 464, 704–712.

2. Mills,R.E., Walter,K., Stewart,C., Handsaker,R.E., Chen,K.,
Alkan,C., Abyzov,A., Yoon,S.C., Ye,K., Cheetham,R.K. et al. (2011)
Mapping copy number variation by population-scale genome
sequencing. Nature, 470, 59–65.

3. Collins,R.L., Glessner,J.T., Porcu,E., Lepamets,M., Brandon,R.,
Lauricella,C., Han,L., Morley,T., Niestroj,L.-M., Ulirsch,J. et al.
(2022) A cross-disorder dosage sensitivity map of the human genome.
Cell, 185 , 3041–3055.

4. Weischenfeldt,J., Symmons,O., Spitz,F. and Korbel,J.O. (2013)
Phenotypic impact of genomic structural variation: insights from and
for human disease. Nat. Rev. Genet., 14, 125–138.

5. Dinneen,T.J., Ghralaigh,F.N., Walsh,R., Lopez,L.M. and
Gallagher,L. (2022) How does genetic variation modify ND-CNV
phenotypes?Trends Genet., 38, 140–151.

6. Scott,A.J., Chiang,C. and Hall,I.M. (2021) Structural variants are a
major source of gene expression differences in humans and often
affect multiple nearby genes. Genome Res., 31, 2249-2257.

7. Alkan,C., Coe,B.P. and Eichler,E.E. (2011) Genome structural
variation discovery and genotyping. Nat. Rev. Genet., 12, 363–376.

8. Wang,K., Li,M., Hadley,D., Liu,R., Glessner,J., Grant,S.F.,
Hakonarson,H. and Bucan,M. (2007) PennCNV: an integrated
hidden Markov model designed for high-resolution copy number
variation detection in whole-genome SNP genotyping data. Genome
Res., 17, 1665–1674.

9. Logsdon,G.A., Vollger,M.R. and Eichler,E.E. (2020) Long-read
human genome sequencing and its applications. Nat. Rev. Genet., 21,
597–614.

10. Collins,R.L., Brand,H., Karczewski,K.J., Zhao,X., Alfoldi,J.,
Francioli,L.C., Khera,A.V., Lowther,C., Gauthier,L.D., Wang,H.
et al. (2020) A structural variation reference for medical and
population genetics. Nature, 581, 444–451.

11. Van Hout,C.V., Tachmazidou,I., Backman,J.D., Hoffman,J.D.,
Liu,D., Pandey,A.K., Gonzaga-Jauregui,C., Khalid,S., Ye,B.,
Banerjee,N. et al. (2020) Exome sequencing and characterization of
49,960 individuals in the UK Biobank. Nature, 586, 749–756.

12. Consortium,SPARK (2018) SPARK: a US cohort of 50,000 families
to accelerate autism research. Neuron, 97, 488–493.

13. Fromer,M., Moran,J.L., Chambert,K., Banks,E., Bergen,S.E.,
Ruderfer,D.M., Handsaker,R.E., McCarroll,S.A., O’Donovan,M.C.,
Owen,M.J. et al. (2012) Discovery and statistical genotyping of
copy-number variation from whole-exome sequencing depth. Am. J.
Hum. Genet., 91, 597–607.

14. Krumm,N., Sudmant,P.H., Ko,A., O’Roak,B.J., Malig,M., Coe,B.P.,
Project,N.E.S., Quinlan,A.R., Nickerson,D.A. and Eichler,E.E.
(2012) Copy number variation detection and genotyping from exome
sequence data. Genome Res., 22, 1525–1532.

15. Plagnol,V., Curtis,J., Epstein,M., Mok,K.Y., Stebbings,E.,
Grigoriadou,S., Wood,N.W., Hambleton,S., Burns,S.O.,
Thrasher,A.J. et al. (2012) A robust model for read count data in
exome sequencing experiments and implications for copy number
variant calling. Bioinformatics, 28, 2747–2754.

16. Backenroth,D., Homsy,J., Murillo,L.R., Glessner,J., Lin,E.,
Brueckner,M., Lifton,R., Goldmuntz,E., Chung,W.K. and Shen,Y.
(2014) CANOES: detecting rare copy number variants from whole
exome sequencing data. Nucleic Acids Res., 42, e97.

17. Zhang,Y., Yu,Z., Ban,R., Zhang,H., Iqbal,F., Zhao,A., Li,A. and
Shi,Q. (2015) DeAnnCNV: a tool for online detection and annotation

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkac788/6702465 by C

olum
bia U

niversity user on 17 Septem
ber 2022

https://github.com/ShenLab/CNV-Espresso
https://base.sfari.org
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkac788#supplementary-data


8 Nucleic Acids Research, 2022

of copy number variations from whole-exome sequencing data.
Nucleic Acids Res., 43, W289–W294.

18. D’Aurizio,R., Pippucci,T., Tattini,L., Giusti,B., Pellegrini,M. and
Magi,A. (2016) Enhanced copy number variants detection from
whole-exome sequencing data using EXCAVATOR2. Nucleic Acids
Res., 44, e154.

19. Packer,J.S., Maxwell,E.K., O’Dushlaine,C., Lopez,A.E., Dewey,F.E.,
Chernomorsky,R., Baras,A., Overton,J.D., Habegger,L. and
Reid,J.G. (2016) CLAMMS: a scalable algorithm for calling common
and rare copy number variants from exome sequencing data.
Bioinformatics, 32, 133–135.

20. Gambin,T., Akdemir,Z.C., Yuan,B., Gu,S., Chiang,T.,
Carvalho,C.M.B., Shaw,C., Jhangiani,S., Boone,P.M.,
Eldomery,M.K. et al. (2017) Homozygous and hemizygous CNV
detection from exome sequencing data in a Mendelian disease cohort.
Nucleic Acids Res., 45, 1633–1648.

21. Tan,R., Wang,J., Wu,X., Juan,L., Zheng,L., Ma,R., Zhan,Q.,
Wang,T., Jin,S., Jiang,Q. et al. (2017) ERDS-exome: a hybrid
approach for copy number variant detection from whole-exome
sequencing data. IEEE/ACM Trans. Comput. Biol. Bioinform., 17,
796–803.

22. Jiang,Y., Wang,R., Urrutia,E., Anastopoulos,I.N., Nathanson,K.L.
and Zhang,N.R. (2018) CODEX2: full-spectrum copy number
variation detection by high-throughput DNA sequencing. Genome
Biol., 19, 202.

23. Rajagopalan,R., Murrell,J.R., Luo,M. and Conlin,L.K. (2020) A
highly sensitive and specific workflow for detecting rare copy-number
variants from exome sequencing data. Genome Med., 12, 14.

24. Olson,H., Shen,Y., Avallone,J., Sheidley,B.R., Pinsky,R.,
Bergin,A.M., Berry,G.T., Duffy,F.H., Eksioglu,Y., Harris,D.J. et al.
(2014) Copy number variation plays an important role in clinical
epilepsy. Ann. Neurol., 75, 943–958.

25. Pounraja,V.K., Jayakar,G., Jensen,M., Kelkar,N. and Girirajan,S.
(2019) A machine-learning approach for accurate detection of copy
number variants from exome sequencing. Genome Res., 29,
1134–1143.

26. Liu,Y., Huang,Y., Wang,G. and Wang,Y. (2021) A deep learning
approach for filtering structural variants in short read sequencing
data. Brief. Bioinform., 22, bbaa370.

27. Glessner,J.T., Hou,X., Zhong,C., Zhang,J., Khan,M., Brand,F.,
Krawitz,P., Sleiman,P.M.A., Hakonarson,H. and Wei,Z. (2021)
DeepCNV: a deep learning approach for authenticating copy number
variations. Brief. Bioinform., 22, bbaa381.

28. Belyeu,J.R., Chowdhury,M., Brown,J., Pedersen,B.S., Cormier,M.J.,
Quinlan,A.R. and Layer,R.M. (2021) Samplot: a platform for
structural variant visual validation and automated filtering. Genome
Biol., 22, 161.

29. Howard,A.G., Zhu,M., Chen,B., Kalenichenko,D., Wang,W.,
Weyand,T., Andreetto,M. and Adam,H. (2017) MobileNets: efficient
convolutional neural networks for mobile vision applications. arXiv
doi: https://arxiv.org/abs/1704.04861, 17 April 2017, preprint: not
peer reviewed.

30. Jiang,Y., Oldridge,D.A., Diskin,S.J. and Zhang,N.R. (2015) CODEX:
a normalization and copy number variation detection method for
whole exome sequencing. Nucleic Acids Res., 43, e39.

31. Bailey,J.A., Yavor,A.M., Massa,H.F., Trask,B.J. and Eichler,E.E.
(2001) Segmental duplications: organization and impact within the
current human genome project assembly. Genome Res., 11,
1005–1017.

32. Ivakhno,S., Roller,E., Colombo,C., Tedder,P. and Cox,A.J. (2018)
Canvas SPW: calling de novo copy number variants in pedigrees.
Bioinformatics, 34, 516–518.

33. Chen,X., Schulz-Trieglaff,O., Shaw,R., Barnes,B., Schlesinger,F.,
Kallberg,M., Cox,A.J., Kruglyak,S. and Saunders,C.T. (2016) Manta:
rapid detection of structural variants and indels for germline and
cancer sequencing applications. Bioinformatics, 32, 1220–1222.

34. Belyeu,J.R., Brand,H., Wang,H., Zhao,X., Pedersen,B.S., Feusier,J.,
Gupta,M., Nicholas,T.J., Brown,J., Baird,L. et al. (2021) De novo
structural mutation rates and gamete-of-origin biases revealed
through genome sequencing of 2,396 families. Am. J. Hum. Genet.,
108, 597–607.

35. Itsara,A., Wu,H., Smith,J.D., Nickerson,D.A., Romieu,I.,
London,S.J. and Eichler,E.E. (2010) De novo rates and selection of
large copy number variation. Genome Res., 20, 1469–1481.

36. Soemedi,R., Wilson,I.J., Bentham,J., Darlay,R., Topf,A.,
Zelenika,D., Cosgrove,C., Setchfield,K., Thornborough,C.,
Granados-Riveron,J. et al. (2012) Contribution of global rare
copy-number variants to the risk of sporadic congenital heart disease.
Am. J. Hum. Genet., 91, 489–501.

37. Pedersen,B.S. and Quinlan,A.R. (2018) Mosdepth: quick coverage
calculation for genomes and exomes. Bioinformatics, 34, 867–868.

38. Hunter,J.D. (2007) Matplotlib: a 2D graphics environment. Comput.
Sci. Eng., 9, 90–95.

39. Kingma,D.P. and Ba,J. (2014) Adam: a method for stochastic
optimization. arXiv doi: https://arxiv.org/abs/1412.6980, 30 January
2017, preprint: not peer reviewed.

40. He,K., Zhang,X., Ren,S. and Sun,J. (2016) Deep residual learning for
image recognition. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, 27–30 June
2016. IEEE, Piscataway, NJ, pp. 770–778.

41. Krizhevsky,A. and Hinton,G. (2009) Learning multiple layers of
features from tiny images. In: Technical Report. University of
Toronto, Toronto, Canada.

42. Qi,H., Zhang,H., Zhao,Y., Chen,C., Long,J.J., Chung,W.K., Guan,Y.
and Shen,Y. (2021) MVP predicts the pathogenicity of missense
variants by deep learning. Nat. Commun., 12, 510.

43. Glessner,J.T., Bick,A.G., Ito,K., Homsy,J., Rodriguez-Murillo,L.,
Fromer,M., Mazaika,E., Vardarajan,B., Italia,M., Leipzig,J. et al.
(2014) Increased frequency of de novo copy number variants in
congenital heart disease by integrative analysis of single nucleotide
polymorphism array and exome sequence data. Circ. Res., 115,
884–896.

44. Zaidi,S., Choi,M., Wakimoto,H., Ma,L., Jiang,J., Overton,J.D.,
Romano-Adesman,A., Bjornson,R.D., Breitbart,R.E., Brown,K.K.
et al. (2013) De novo mutations in histone-modifying genes in
congenital heart disease. Nature, 498, 220–223.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkac788/6702465 by C

olum
bia U

niversity user on 17 Septem
ber 2022

https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1412.6980

