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Abstract  

Background 

Diverse large cohorts are necessary for dissecting subtypes of autism, and intellectual 

disability is one of the most robust endophenotypes for analysis. However, current 

cognitive assessment methods are not feasible at scale. 

Methods 

We developed five commonly used machine learning models to predict cognitive 

impairment (FSIQ<80 and FSIQ<70) and FSIQ scores among 521 children with autism 

using parent-reported online surveys in SPARK, and evaluated them in an independent 

set (n=1346) with a missing data rate up to 70%. We assessed accuracy, sensitivity and 

specificity by comparing predicted cognitive level against clinical IQ data.  

Results 

The elastic-net model has good performance (AUC=0.876, sensitivity=0.772, 

specificity=0.803) using 129 predictive features to impute cognitive impairment 

(FSIQ<80). Top ranked predictive features included parent-reported language and 

cognitive levels, age at autism diagnosis, and history of services. Prediction of FSIQ<70 

and FSIQ scores also showed good prediction performance. 

Conclusions 

We show cognitive levels can be imputed with high accuracy for children with autism, 

using commonly collected parent-reported data and standardized surveys. The current 

model offers a method for large scale autism studies seeking estimates of cognitive 

ability when standardized psychometric testing is not feasible.   
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Lay summary: Children with autism who have more severe learning challenges or 

cognitive impairment have different needs that are important to consider in research 

studies. When children in our study were missing standardized cognitive testing scores, 

we were able to use machine learning with other information to correctly “guess” when 

they have cognitive impairment about 80% of the time. We can use this information in 

research in the future to develop more appropriate treatments for children with autism 

and cognitive impairment.  

 

Running title: Imputing cognitive impairment in SPARK 

Keywords: Autism, cognitive impairment, intelligence quotient, imputation, machine 
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Introduction 

There is significant phenotypic and genetic heterogeneity in ASD that complicates the 

ability to identify etiologies. The need for larger sample sizes for subtyping has led to 

the call for large-scale studies using remote phenotyping protocols (Warnell et al., 2015, 

Wang et al., 2016, Samocha et al., 2014). However, current clinical assessment 

methods are not feasible at scale.  

 

IQ (intelligence quotient) is a key phenotype in autism research, for stratification of the 

population into subtypes, prediction of individual outcomes, and correlation with genes 

and genetic architecture (Munson et a., 2008; Mason et al., 2020; Anderson et al., 2014; 

Gradzinski et al., 2013; Allegrini et al., 2019; Benyamin et al., 2014, Davies et al., 2011, 

Steffanson et al., 2014; Robinson et al., 2017, Ronemus et al., 2014, Rauch et al., 

2012; Iossofiv et al., 2014; De Rubeis et al., 2014; Sanders et al., 2015; Grove, 2019; 

Satterstrom, 2020). For children with autism, formal cognitive assessment requires 

expert in-person examination that is costly, not equally accessible to all, and not always 

feasible in children with the most severe forms of autism (Corona, et al., 2021). In lieu of 

full assessments, proxy measures of IQ, such as receptive vocabulary and single visual 

reasoning tasks are used (Hamburg et al., 2019; Frazier et al., 2004; Kriseleva et al., 

2017, Dawson et al., 2007), and efforts are underway to develop web-based cognitive 

testing applications (for example, Hansen, 2016; Scott et al., 2020). However, these 

testing methods are not yet fully validated for remote in-home use either in children or in 

individuals with autism, as would be required for large studies, nor are they appropriate 

for very young children or severely impaired individuals who require significant support 
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for online tasks. Sometimes the Vineland Adaptive Behavior Scales are used as a proxy 

for cognitive ability (Charman et al., 2011); however, its scores show non-linear 

associations with IQ due to discrepancies in daily functioning, particularly for those with 

higher intellectual ability (Bolte and Poustka, 2002; Freeman et al., 1998; Alvares et al., 

2020). Clinicians and researchers have used parent report of estimated developmental 

ages and intelligence, but the accuracy of this method is inconsistent (Chandler et al., 

2016). Ideally, clinical IQ test data could be abstracted from medical or school records, 

but the resources required to do this across a national cohort is challenging (Coleman et 

al., 2015; Maenner et al., 2020). 

 

As an alternative, methods for estimation or imputation of cognitive level based on IQ 

may be used. When IQ scores are not available, cognitive ability is often imputed by 

alternative measures such as educational attainment in teens or adults using 

educational records (Cornish et al., 2015). This approach is not possible for many 

autistic individuals whose educational history follows a different path such as 

therapeutic or ungraded settings, especially in children. When only a small proportion of 

participants are missing IQ scores, multiple imputation can be used to impute IQ scores 

(Horwood et al., 2018; Reid et al., 2018). However, this method does not work well on 

data with significant missingness. Alternatively, missing cognitive test scores can be 

imputed by linear regression models based on scores from other related concurrent 

measures, but the performance of these models typically has not been examined in 

terms of sensitivity or specificity (for example, see Emerson et al., 2016). 
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Linear regression also has been used to predict IQ in typical children using available 

demographic information, such as age, sex, parent education, and family literacy level 

(Schoenberg et al. 2007). Traditionally, imputation with regression models typically 

involves a priori subjective judgments for a small number of predictors within large 

datasets. Its prediction performance may be limited due to missing potentially critical 

variables unknown to the investigators, and the subjective selection itself can lead to 

overfitting and less generalizability to other datasets. When dealing with complicated 

and large datasets, it may have limited performance when compared to other advanced 

methods such as classification and regression trees (Finch et al., 2011).  Studies 

predicting psychological traits increasingly use machine learning models. Machine 

learning techniques do not require a priori selection of predictors, are able to uncover 

latent and complicated relationships between a large number of data points, and 

emphasize the evaluation of prediction accuracy. Most uses of machine learning for 

cognitive estimation have involved prediction of future cognitive status in other clinical 

groups, such as older adults, (Graham et al., 2020), and although machine learning and 

clustering models are being applied to autism, they are largely used for trait-based 

subtyping and detection (Lombardo, Meng-Chuan & Baron-Cohen, 2019; Veatch et al., 

2013).   

 

SPARK (SPARK Consortium, 2018; Feliciano et al., 2019) offers the opportunity to 

leverage a large, heterogeneous autism cohort with phenotypic data collected online, 

along with clinical IQ data available for a subset of participants. It enables us to develop 

and assess machine learning prediction models for predicting cognitive level, using 
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commonly collected parent-reported information. We hypothesized that cognitive 

impairment and IQ scores in children with ASD can be predicted based on parent-

reported information such as medical and developmental history and standardized 

questionnaires. We developed machine learning models to impute cognitive impairment 

using both a binary classification model with different IQ cutoffs and a continuous 

model, with comparison to traditional methods such as multiple imputation. The current 

study seeks to fill the gap in available methods to assess cognitive impairment in 

autism, for use in large scale autism and autism genetics research studies.  

Methods 

1. Sample overview 

The SPARK cohort is currently the largest genetic study of autism. Participants are 

recruited through a network of US clinical sites and social media, and the study is 

conducted entirely online. As of early 2021, there were 84,161 children and dependents 

with a parent-reported professional ASD diagnosis (Figure 1). IQ scores were collected 

on 3,136 participants with ASD, and 2,545 participants have full scale IQ (Figure 1). We 

selected 521 participants with a complete dataset for initial model development, and 

another newly collected independent set (n=1,346) to further assess the model’s 

performance (Figure 1).  

2. Measures  

Surveys of demographics, diagnostic details, medical and developmental history, and 

standardized instruments including the Social Communication Questionnaire-Lifetime 
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(SCQ-L; Rutter et al., 2003), Developmental Coordination Disorder Questionnaire 

(DCDQ; Wilson et al., 2007), Repetitive Behavior Scale-Revised (RBS-R; Bodfish et al, 

2000), and Vineland 3rd Edition Parent-Caregiver Comprehensive rating form (Sparrow 

et al., 2016) were completed by parents online. Item level data and total scores were 

utilized for analyses. At enrollment, caregivers reported any history of ID and current 

functional language level (nonverbal/single words/ phrases/complex sentences). 

Parents were asked questions regarding developmental milestones and regression 

(language and/or other skills), prior cognitive testing results, estimates of functioning, 

and special education services and therapies. The medical history collects data on 

major co-morbid medical, developmental and psychiatric conditions.  

 

Estimated cognitive functioning level was reported by parents in several ways: overall 

IQ testing score if available, the mental age (age equivalent) they had been given by 

clinical or school providers, and general cognitive level (degree of delay) relative to 

chronological age. IQ test scores and mental age equivalents reported by parents could 

not be utilized due to missing data, which reflects parent uncertainty or lack of access to 

test results.  

3. Key IQ indices collected at clinical sites 

Full Scale IQ (FSIQ), Nonverbal IQ (NVIQ) and Verbal IQ (VIQ) data were collected by 

research staff from review of electronic and paper clinical and research records at 24 

SPARK clinical sites. Staff were trained in data abstraction and required to complete 

and submit Case Report Forms to demonstrate inter-rater agreement with their site 

supervisor (psychologist), which was required to be 100% in order to proceed with data 
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collection. Recent reports of inter-rater reliability in SPARK were high (ICC=0.98) for 

abstraction of IQ data using these methods (Fombonne et al., 2021). Participants age 

15 months and older were prioritized, given more limited confidence in diagnosis and 

test results in infancy. FSIQ, NVIQ, VIQ, and developmental quotients in the case of 

young children, were accepted for a specific list of common, standardized, norm-

referenced tests. Testing was the most recent evaluation on record. IQ assessment 

data were accepted if they were verified by site staff to be provided by a qualified 

professional (licensed M.A. or Ph.D.) in psychology or by a psychometrician supervised 

by a licensed psychologist, including clinical, school or research evaluations. To 

standardize collection of IQ data across sites, a training manual and online data entry 

form containing validators were provided. Any concerns regarding validity of the test 

results by the original test examiner of record also were entered as a flag, and such 

cases were excluded from analyses. All participants signed authorization within the 

SPARK informed consent permitting bidirectional data sharing of IQ and other 

information between SPARK staff and clinical sites.  

 

IQ test data included but were not limited to the Wechsler Intelligence Scales for 

Children (Wechsler, 2014), Stanford-Binet Intelligence Test (Roid, 2003), Mullen Early 

Learning Composite (Mullen, 1995), Bayley Scales of Infant Development Mental 

Development Index and Cognitive Composite (Bayley, N., Aylward, G.P., 2019), and the 

Differential Ability Scales Global Cognitive Ability (Elliott, 2007). The indices accepted 

were measurements scaled to a mean standard score of 100 and standard deviation of 

15. Not included were school readiness screeners, achievement tests, parent-reported 
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developmental screeners or adaptive functioning interviews/surveys. Questionnaire 

measures were taken within a median of 16 months from the IQ test date among all 

participants. 

4. Statistical association between IQ domain scores and between IQ scores and other 

covariates 

IQ scores were coalesced across test types based upon their common scaling 

(Mean=100, Standard Deviation=15) as is common in autism research given the flexible 

assessment approaches required for valid comparisons (Bishop et al., 2015). Pearson 

correlations were calculated between FSIQ, NVIQ and VIQ scores. Pairwise scatterplots 

with a fitted linear model were used to assess whether the relationships are linear. 

Similarly, we also assessed the relationship between IQ scores and age of IQ testing by 

Pearson correlation and scatterplots. Lowess smoothing was used to illustrate the 

relationship between IQ scores and age when IQ score was tested. 

 

We also assessed the association between IQ scores and other variables available in 

SPARK, including those known to be strongly and consistently predictive of IQ across 

age in autism (Simonoff et al., 2019) - reported ID, estimated cognitive level (above, at 

or below chronological age level), language level at enrollment, history of any 

developmental delay and parent-report of motor.  

5. Machine learning methods to predict cognitive impairment 

FSIQ was used to define cognitive impairment since the largest number of records were 

available and it is highly correlated with NVIQ and VIQ. We defined cognitive 
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impairment as FSIQ<80, in order to 1) increase the likelihood of identifying all 

individuals with subaverage intellectual functioning for genetic studies, 2) align better 

with current diagnostic criteria for ID which do not require an IQ cutoff of 70, and 3) 

prevent the inappropriate classification of average IQ individuals together with 

individuals with borderline intellectual functioning (Munson et al., 2008; Nouwens et al., 

2017). The goal of the machine learning model is to distinguish participants with FSIQ 

<80 versus FSIQ ≥ 80. Because FSIQ<70 also is commonly used to define cognitive 

impairment, we applied the same model training, selection and testing procedures to 

develop an elastic net model to predict participants with FSIQ<70. Sensitivity analysis 

was conducted using FSIQ <70/FSIQ ≥ 70 and continuous prediction of FSIQ. There 

were 271 predictive measures included. Vineland scores were not included due to a 

high missing rate.The full list of final selected predictors is included in Supplementary 

Table 1. 

a. Training, validation and testing sets 

The data in the initial sample (n=521) were randomly split into 60% training 

(n=313), 20% validation (n=104) and 20% testing data (n=104) while keeping the 

proportion of lower IQ consistent across training, validation and testing sets 

(Table 1). The model training was conducted in the training set, the validation set 

was used to select the best performing model, and the testing set was used to 

decide the predictive probability cutoff and model evaluation. An evaluation was 

also conducted to assess the model performance in the presence of missing 

values (up to 70%) in an additional independent set (n=1,346; Figure 1, Table 

1).  
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b. Model training, selection and evaluation 

In the training set, we trained the following commonly used machine learning 

models for classification using the R package caret Version 6.0-88 (Kuhn, 2008): 

elastic-net regularized generalized linear models with no interaction terms 

(glmnet), support vector machines (svmRadial), random forest (rf), k-Nearest 

Neighbors (kNN) and gradient boosting (xgbTree). These five models are 

commonly used in solving classification problems (Friedman, 2001; 

Maglogiannis, 2007; Ogutu, 2011; Chen, 2016). The elastic-net model is a 

modified version of linear regression with a penalty on the number of covariates, 

and is easy to interpret. Support vector machines, random forest, k-nearest 

neighbors and gradient boosting trees can deal with high-dimensional datasets 

but are often hard to interpret. Ten-fold cross-validation was used in the training 

to minimize overfitting. Model parameters were chosen by a random grid of 50 

possible combination of values and optimal parameters were chosen by the best 

receiver operating characteristic (ROC) among cross-validated resamples in the 

training set. As a sensitivity analysis for predicting continuous FSIQ, only elastic-

net, support vector machines and k-Nearest Neighbors were suitable for 

continuous prediction and were used in the training.   

 

In the validation set, we evaluated the prediction performance for the five trained 

models by receiver operating characteristic (ROC) curve and area under the 

curve (AUC). The model with the highest AUC was selected as the final model. 

As a sensitivity analysis for predicting continuous FSIQ, we used the Spearman 
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correlation between true and predicted FSIQ, root mean square error (RMSE), 

Cohen’s kappa, sensitivity and specificity. 

 

In the testing sets, we further evaluated the prediction performance of the final 

model by ROC curve, AUC, accuracy, Cohen’s kappa, sensitivity, specificity and 

positive predictive values (PPV) and negative predictive values (NPV). We 

determined the predictive probability cutoff for cognitive impairment in the initial 

testing set.  

c. Variable importance ranking 

The variable importance was obtained by elastic-net model using 100 bootstraps 

conducted with the R package caret. The variable importance was scaled from -

100 to 100 with absolute value reflecting the relative importance and 

directionality reflecting the direction of predicting low IQ.  

To compare the machine learning prediction performance with traditional methods, we 

applied the multiple imputation method to the same dataset of 521 participants and 271 

measures. We kept the cognitive impairment status (FSIQ<80; FSIQ<70) in the training 

set available (n=313) and set the cognitive impairment status as missing in the initial 

testing set (n=104). We ran the multiple imputation algorithm (Van Buuren et al., 2011) 

to impute the missing cognitive impairment using the R package mice (Version 3.13.0). 

We assessed the accuracy, Cohen’s kappa, sensitivity, specificity and positive and 

negative predictive values (PPV, NPV) and compared the performance with the 

machine learning prediction.  
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6. Assess prediction performance in the additional independent dataset (n=1,346) with 

missingness  

We used 1,346 newly collected participants with FSIQ, having no overlap with the 

original 521 cases and a missing rate of up to 70% among the 271 predictive features 

(Table 1). We first applied nonparametric missing value imputation methods (Stekhoven 

et al., 2012) to the dataset with all predictive features by R package missForest (Version 

1.4). Then, we used our trained elastic net model to obtain the predicted probability of 

imputed cognitive impairment. We assessed the prediction performance by ROC curves 

with the predicted probability, and used the same probability cutoff as the initial testing 

set to assess the accuracy, Cohen’s kappa, sensitivity, specificity and positive and 

negative predictive values (PPV, NPV). We also assessed the prediction performance 

by different levels of missing rate among 271 features.  

 

Results 

1. IQ scores in SPARK are highly linearly inter-correlated and independent of age. 

Among 521 ASD participants with complete FSIQ and all 271 measures (Figure 1) in 

the initial set, 81.2% were male (Table 1) and the average age at enrollment was 7.9 

years (Range 2 – 15.5 years). The racial composition is 72.4% white, 7.1% African 

American, 1.7% Asian, 0.2% Native American, 1.3% other, and 17.3% more than one 

race. Mean IQ scores are: FSIQ=84.0, NVIQ=94.9, VIQ=89.7. The training, validation 

and testing sets have similar demographic distribution (Table 1).  
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Based on the scatterplots (Supplementary Figure 1) and the pair-wise Pearson 

correlation, FSIQ, NVIQ and VIQ are highly positively linearly correlated (r > 0.7). We 

also assessed the relationship between IQ scores and age of IQ testing 

(Supplementary Figure 2). There is no correlation between the three types of IQ 

scores and age (-0.06<r<0.06).  

2. Machine learning models can accurately predict cognitive impairment as defined by 

FSIQ<80 

We conducted an initial assessment of several measures considered to be relevant to 

IQ (Table 2, Supplementary Figure 3). Parent-reported severity of cognitive delay and 

functional language level are strongly associated with FSIQ, NVIQ and VIQ, followed by 

any language delay or language disorder, severity of language regression, and parent-

reported ID diagnosis (Table 2).  

Among 150 participants with FSIQ<70, 25 participants (16.7%) were reported as ID by 

their parents. With FSIQ<80, 37 out of 216 participants (17.1%) were reported as ID.  

 

Machine learning models showed good prediction of cognitive impairment as defined by 

FSIQ<80. In the training set, we trained five commonly used machine learning models 

and assessed their prediction performance in the validation set by receiver operating 

characteristic (ROC) curves (Figure 2). Elastic-net regularized generalized linear model 

has the best performance (AUC=0.900) followed by support vector machines 

(AUC=0.891), k-nearest neighbors (AUC=0.863), random forest (AUC=0.863) and 

gradient boosting (AUC=0.843). Based on the prediction performance in the validation 
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set, we chose the elastic-net model as the final model using 129 predictive features 

(Supplementary table 1).  

We calculated the variable importance with directionality for these 129 selected 

predictive features (Figure 3, Supplementary table 1). Parent-reported language and 

cognitive levels or diagnoses, age at ASD diagnosis, mood/anxiety disorder, specific 

items on standardized motor and ASD questionnaires and service history are significant 

IQ predictors.  

When applying our final elastic net model to the initial independent testing set, the 

predictive performance is relatively high with an AUC of 0.888 (Figure 4). With a cutoff 

of 0.45 on the predictive probability by the elastic-net model, the sensitivity is 0.744 and 

the specificity is 0.885 for predicting cognitive impairment (Figure 4, Table 3). 

 
We compared the model’s performance with an multiple imputation approach (Table 3). 

The overall accuracy, kappa, sensitivity and specificity are lower by multiple imputation 

compared to the elastic net model (Table 3; FSIQ<80: accuracy=0.692, 

sensitivity=0.558, specificity=0.787; FSIQ<70: accuracy=0.779, sensitivity=0.600, 

specificity=0.851). 

 

3. Prediction performance for FSIQ<80 in an additional independent set (n=1,346) in 

SPARK with missingness in predictive features 

In the larger newly collected independent set with missing rate up to 70% (n=1,346; 

Figure 1, Table 1):12.9% are nonverbal, 14.5% reported ID and the mean FSIQ is 

77.89 (Table 1). Among all 271 features, rates of each level of missing values in the 

sample are as follows: no missing - 197 (14.6%), <10% missing- 528 (39.2%), 10-30% 
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missing - 128 (9.5%), 30-50% missing - 366 (27.2%) and 50-70% missing - 127 (9.4%) 

participants (Table 1).  

We imputed the missing values among predictive features by existing methods 

(Stekhoven et al., 2012) and then applied our trained elastic net model to obtain 

predicted probability of imputed cognitive impairment (FSIQ<80). By using a cutoff of 

0.45 on the predicted probability, most prediction performance metrics in the additional 

independent set are comparable and just slightly lower than in the initial testing set 

(AUC=0.876, Figure 5; sensitivity=0.772, specificity=0.803, accuracy=0.787, Table 3). 

We also examined the prediction performance in subsets of participants with different 

missing rates within the additional independent set. The AUC’s among all subsets were 

comparable to the AUC in the initial testing set with no missing values (n=104) 

(Supplementary Figure 6a, Supplementary Table 4). Overall, the prediction 

performance is still comparable to the initial testing set even with some level of 

missingness among the predictors.  

 
 
4. Sensitivity analysis when cognitive impairment is defined by FSIQ<70 

The elastic net model for FSIQ<70 selected 128 features, and top ranked predictors are 

similar to the previous model predicting FSIQ<80. In both the initial testing set (n=104) 

and the additional independent set (n=1,346), most prediction performance metrics in 

the FSIQ<70 model are comparable and just slightly lower than in the FSIQ<80 model 

(initial testing set: AUC=0.881; additional independent set: AUC=0.865, Table 3, 

Supplementary Figure 4b). The prediction performance between the initial testing set 

and the additional independent set is comparable.   
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5. Predicting continuous FSIQ scores by machine learning methods 

We trained the elastic net, support vector machines and k-nearest neighbors models to 

predict continuous FSIQ, and evaluated their performances compared to the binary 

prediction models in the initial testing set (n=104) and additional independent set 

(n=1,346; Supplementary Table 3, Supplementary figure 5). The elastic net model 

has relatively good prediction performance and similar variables of importance. The 

Pearson correlation with true FSIQ is 0.678 in the initial testing set (n=104) and 0.730 in 

the additional independent set (n=1,346), while the root mean square error (RMSE) is 

17.4 in the initial testing set and 16.1 in the additional independent set (Supplementary 

Table 3). We also examined the RMSE in subsets of participants with different missing 

rate in the additional independent set (n=1,346): the RMSE among all subsets was 

comparable to the initial testing set with no missing values (n=104) (Supplementary 

Figure 6c, Supplementary Table 4). The support vector machines model also has 

similar prediction performance to the elastic net model in predicting continuous FSIQ 

(Supplementary Table 3,4). 

 

We then compared the prediction performance of the continuous FSIQ model to our 

binary cognitive impairment model, using binary evaluation metrics. To do this, we 

categorized predicted continuous FSIQ according to cutoffs (<80 and <70, respectively) 

and compared it to true FSIQ classified by the same cutoffs (Supplementary Table 3). 

Overall, compared to the original binary elastic net prediction model, the prediction 

performance was comparable (initial testing set: FSIQ<80 AUC=0.864, FSIQ<70 
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AUC=0.812; additional independent set: FSIQ<80 AUC=0.871, FSIQ<70 AUC=0.875; 

Supplementary Table 3, Table 3). The prediction performance is also similar across 

subsets with varying missing rates in the additional independent set (Supplementary 

Table 4). 

 

Because our main purpose in our research is to impute the presence or absence of 

cognitive impairment, we used the binary elastic net prediction as our final model.  

 

Discussion 

 

Using machine learning methods, we demonstrate it is possible to derive valid estimates 

of cognitive ability based on parent-reported data in a large research cohort of autistic 

individuals for whom formal IQ testing is not available. We are also able to show our 

model performance is relatively stable in the presence of missing data and our 

approach is generalizable to impute cognitive impairment in the broader population of 

children with ASD. Having a cognitive estimate permits more sophisticated phenotypic 

and genomic analyses with available registry data, matching of appropriate control 

groups, and stratification or covariation in analyses for subtyping or to control for 

influences beyond core autism. It also fills a critical gap to include more underserved 

populations and more severely affected individuals for whom cognitive testing may not 

be available. 
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We obtained the variable importance rankings by elastic-net model for all available 

measures in SPARK. Although the variable importance rankings are model dependent 

and data dependent, we found several interesting items that contribute to the prediction 

model. The assessment of predictive importance among all available measures in 

SPARK revealed that parent report on both standardized and non-standardized 

instruments contains valuable information regarding individuals’ cognitive level. Studies 

of other clinical conditions have included similar information as predictors of future 

cognitive status with good success, for example, demographic data and health history 

(Graham et al., 2020). In the present study, the strongest predictors were parent report 

of history of language delay and disorder, report of general cognitive delay, and younger 

age at ASD diagnosis.  

 
We chose to focus on detection of IQ under 80, so as to sensitively capture borderline 

intellectual impairment for our research, beyond a more rigid and outdated definition of 

intellectual disability. We compared definitions of cognitive impairment as FSIQ under 

80 or 70, and predictions using either definition are accurate, suggesting 

generalizability. However, surprisingly few parents reported ID in children with a tested 

IQ below 70 or 80. Parent-report of ID diagnosis was not as strongly associated with IQ 

scores and not as successful as other parent reported information in predicting lower 

IQ. These findings are consistent with prior studies showing parents tend to underreport 

developmental disabilities (Porter et al., 2011).  We found that more concrete questions 

about day-to-day observations of language and cognitive tasks relative to age are more 

significantly associated with IQ scores and are more accurate predictors of cognitive 

impairment. The predictive importance of parent-reported ID diagnosis was low, and 
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lower than many other reported characteristics, including autistic behaviors, early social-

communication skills, and psychiatric co-morbidities. One of the most interesting autism 

characteristics that served to predict cognitive impairment was repetitive playing of a 

song or video segment. In terms of observable skills, after language and overall 

reasoning ability, good fine motor control with scissors was an indicator that cognitive 

impairment is unlikely. Other strong components were education service history: receipt 

of specific autism services, a one-on-one classroom aide and/or assignment to a full 

time self-contained ASD classroom all indicate likely cognitive impairment, while 

assignment to social skills group therapy at school indicates the likelihood that IQ is 

within normal limits.  

 

There were many low-ranking variables with minimal to no predictive importance in the 

model that are notable. For example, a history of generic special education or early 

intervention, and several early signs (such as speech delay and absence of reciprocal 

smiling) had low yield. Similarly, age, maternal higher education, overall severity of 

repetitive behavior or number of signs of autism, sleep problems, motor delays, and 

history of a non-language regression were not strong predictors. On the standardized 

measures, while some specific repetitive and basic social behaviors are predictive, 

others are not. The reason these factors failed to be selected by the model is unclear: it 

is possible some are universal features of autism independent of cognitive ability, had 

low base rates in our sample, or were highly correlated with other variables that were 

alternatively selected by the model.  
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There are several potential implications of our findings. First, when surveying cognitive 

ability in large cohorts, it is important to anchor against chronological age expectations 

and to be specific about the skills queried. IQ and mental age data requested from 

families are often missing. Second, consistent with prior literature, language level 

remains the strongest correlate of IQ. Finally, the present model suggests a set of 

variables that can be easily administered as survey questions and used in an algorithm 

to predict cognitive ability for children in autism studies. 

 

There are several limitations to the present study. First, the current model included only 

children under 18, and results could be different for adults. Second, the assumptions of 

the model require certain caveats. Not all individuals with poor past performance on a 

single IQ test have true global cognitive impairment or ID, nor do all individuals with 

limited language. Individuals must be appreciated for their abilities rather than their 

“disabilities,” and this is the purpose of expert, comprehensive, in-person assessment. 

In this way, all statistical models risk inaccuracy when applied to an individual. Caution 

is urged in estimating cognitive impairment in children below school age in particular. 

The current model was trained on IQ testing data completed at any age or point in time; 

however, if planning to test this or a similar model, researchers may wish to exclude 

cases if IQ tests were completed a long time ago or prior to age 5.  

 

The algorithm for imputing cognitive level may have more limited generalizability to 

groups outside of SPARK given the relatively high IQ and basic language ability of 

participants in the final dataset relative to population estimates in autism (Baio et al., 
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2018), and the high SES reported previously in SPARK (SPARK Consortium, 

2017). The problem of discrepancies between NVIQ and VIQ in many children with 

autism also must be considered. Although NVIQ correlated highly with FSIQ in our 

sample, there is greater variability in its association with VIQ, and our analysis 

necessarily excluded children who had no FSIQ but only a NVIQ or derived ratio IQ 

available and thus may have been nonverbal. In applying an algorithm that leans quite 

heavily on language variables and is based upon FSIQ as the outcome, researchers 

must remain aware of the possibility the model could underestimate some nonverbal 

individuals. However, despite these concerns, it is promising that accuracy of the model 

for the subset of nonverbal individuals in our testing set was high (accuracy=97% 

among 164 non-verbal participants).   

 

When interpreting the variables of greatest importance in the model, it is important to 

note the concept of importance is model-dependent and data dependent, and each 

characteristic on its own cannot be assumed as a one-to-one proxy for IQ classification 

or ID in an individual, but rather operate together to maximize predictive power. Further, 

adaptive behavior, the current standard for ID diagnosis, was not included in the 

analysis due to missing data. Regardless, taken together, the variables clearly have 

face validity and clinical relevance given our knowledge of children with greater 

impairments (Bishop et al., 2015; Munson et al., 2008). 

 

In terms of methodology, despite our use of regularization and cross-validation to 

minimize overfitting, our ratio of data-to-features was relatively low in our model 
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development, which could lead to overfitting and limit the model’s performance when 

imputing cognitive level in other ASD populations. However, we showed the model’s 

performance was comparably good in an additional independent set even in the 

presence of missing data.   

 

Future work will re-train and replicate the predictive models with larger samples 

providing a greater data-to-features ratio and more complete cases with additional 

phenotyping data, and will evaluate the reliability of medical record data abstraction 

underlying the IQ data. Dissecting ASD subtypes by intellectual functioning level will 

allow us to more fully stratify and thereby understand similarities and differences in 

underlying biology across the autism spectrum. The model stands to provide a critical 

missing piece for future genomic and other analyses in the SPARK cohort and beyond.   

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.25.21262613doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.25.21262613
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
  

Table 1: Sample characteristics

Count (%) Mean (SD
†

) Count (%) Mean (SD
†

) Count (%) Mean (SD
†

) Count (%) Mean (SD
†

) Count (%) Mean (SD
†

)

Total Sample Size 521 313 104 104 1346

Age At Registration in Years (mean (SD)) 7.93 (3.27)  7.88 (3.18)  8.00 (3.32)  8.01 (3.53) 8.63 (6.44)

Sex at birth (%)          

    Female    98 (18.8%)    62 (19.8%) 18 ( 17.3%) 18 ( 17.3%) 289 (21.5%)

    Male    423 (81.2%) 251 (80.2%) 86 (82.7%) 86 (82.7%)   1057 (78.5%) 

Race (%)                                                                                           

   African American                                          37 ( 7.1%) 27 ( 8.6%) 5 (  4.8%) 5 (  4.8%) 78 ( 5.8%)

   Asian American 9 ( 1.7%) 5 ( 1.6%) 2 (  1.9%) 2 (  1.9%) 21 ( 1.6%)

   Native American                                                               1 ( 0.2%) 1 ( 0.3%) 0 ( 0%) 0 ( 0%) 2 ( 0.1%)

   White                                                                               377 (72.4%) 218 (69.6%) 79 ( 76.0%) 80 ( 76.9%) 746 (55.4%)

   More Than One Race 90 (17.3%) 57 (18.2%) 17 ( 16.3%) 16 ( 15.4%) 165 (12.3%)

   Other                                                                               7 ( 1.3%) 5 ( 1.6%) 1 (  1.0%) 1 (  1.0%) 60 (4.4%)

Autism Diagnosis Category (%)                                                                                               

   Asperger's Disorder                                                             23 ( 4.4%)    16 ( 5.1%)     4 (  3.8%)     3 (  2.9%)     92 ( 6.9%) 

   Autism or Autistic Disorder                                                 36 ( 6.9%)    23 ( 7.3%)     7 (  6.7%)     6 (  5.8%)    117 ( 8.8%) 

   Autism Spectrum Disorder                                                 438 (84.1%)   258 (82.4%)    89 ( 85.6%)    91 ( 87.5%)   1053 (79.2%) 

   Pervasive Developmental Disorder - Not Otherwise 

Specified (PDD-NOS)                   24 ( 4.6%)    16 ( 5.1%)     4 (  3.8%)     4 (  3.8%)     68 ( 5.1%) 

History of Intellectual Disability (%)  

   Yes    51 ( 9.8%)    30 ( 9.6%)     8 (  7.7%)    13 ( 12.5%)    185 (14.5%) 

   No 470 (90.2%) 283 (90.4%) 96 (92.3%) 91 (87.5%) 1161 (86.3%)

Functional language level (%)                                                                        

   Nonverbal    16 ( 3.1%)    10 ( 3.2%)     4 (  3.8%)     2 (  1.9%)    164 (12.9%) 

   Single words    36 ( 6.9%)    24 ( 7.7%)     6 (  5.8%)     6 (  5.8%)    182 (14.3%) 

   Phrase speech    87 (16.7%)   229 (73.2%)    79 ( 76.0%)    74 ( 71.2%)    198 (15.5%) 

   Complex sentences   382 (73.3%)    50 (16.0%)    15 ( 14.4%)    22 ( 21.2%)    731 (57.3%) 

Full Scale IQ
‡ 

(mean (SD))          84.04 (22.85) 84.10 (22.78) 83.10 (21.88) 84.80 (24.20)  77.89 (23.38)

Nonverbal IQ (mean (SD))      94.87 (19.95) 95.90 (20.09) 93.30 (19.84) 93.48 (19.74)  91.75 (20.83)

Verbal IQ (mean (SD))               89.72 (21.30) 89.96 (21.09) 88.01 (20.94) 90.80 (22.40)  88.83 (22.52)

Missing rate among 271 features

   No missing 521 (100%) 313 (100%) 104 (100%) 104 (100%)    197 (14.6%) 

   <0.1    528 (39.2%) 

   0.1-0.3    128 ( 9.5%) 

   0.3-0.5    366 (27.2%) 

   0.5-0.7    127 ( 9.4%) 

†SD: standard deviation

‡IQ: intelligence quotient

Model development (n=521) Additional independent set 

(n=1,346)Overall Training Validation Testing
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Table 2: Association between cognitive, language measures and IQ scores

Measures Mean SD
‡

p-value Mean SD p-value Mean SD p-value

History of Intellectual Disability

No 470 85.7 22.6 97.5 17.8 92.3 19.9

Yes 51 68.9 19.3 73.1 23.4 69.8 21.4

Functional language level

Nonverbal 16 52.7 8.0 N/A N/A N/A N/A

Single words 36 61.0 17.9 66.4 25.7 53.3 16.3

Phrase speech 87 66.2 16.7 78.3 20.0 69.3 17.7

Complex sentences 382 91.6 19.9 98.7 17.3 94.5 18.5

Parent-reported severity of cognitive delay

Significantly below age 102 66.5 18.3 76.7 20.6 71.4 21.4

Slightly below age 145 76.2 18.1 88.3 15.8 83.2 15.8

At age 150 91.2 19.0 100.9 13.3 96.6 18.3

Above age 124 99.0 22.2 107.9 17.3 101.5 17.7

Language delay or language disorder

No 184 93.0 22.1 102.9 17.3 98.6 19.6

Yes 337 79.1 21.8 89.9 19.9 84.5 20.5

Severity of language regression

None 402 87.0 22.2 95.6 19.2 91.7 20.6

Recovered 96 77.8 22.4 94.7 21.5 83.2 21.0

Unrecovered 23 59.2 16.1 72.8 20.3 68.3 26.7

†IQ: intelligence quotient

‡SD: standard deviation

1.7E-10 8.2E-03

Nonverbal IQ Verbal IQFull Scale IQ
†

1.9E-21

8.6E-11

3.3E-03

3.6E-27 2.9E-07

1.0E-31 1.1E-22

2.6E-11 1.9E-10

Count

1.9E-07 8.0E-08 2.1E-08

9.0E-12
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Table 3: Prediction performance by elastic net classification models and multiple imputation 

FSIQ
†
 Cutoff FSIQ<80 FSIQ<70

Dataset
Initial testing 

set (n=104)

Additional 

independent set 

(n=1,346)

Initial testing 

set (n=104)

Additional 

independent set 

(n=1,346)

Initial testing 

set (n=104)

Initial testing 

set (n=104)

AUC
‡ 0.888 0.876 0.881 0.865 N/A N/A

Sensitivity 0.744 0.772 0.767 0.750 0.558 0.600

Specificity 0.885 0.803 0.838 0.830 0.787 0.851

Positive 

Predictive Value
0.821 0.805 0.657 0.744 0.649 0.621

Negative 

Predictive Value
0.831 0.769 0.899 0.834 0.716 0.840

Accuracy 0.827 0.787 0.817 0.798 0.692 0.779

Kappa 0.638 0.574 0.576 0.579 0.352 0.456

†FSIQ: Full scale intelligence quotient

‡AUC: area under the curve

Multiple imputationElastic net classfication model

FSIQ<80 FSIQ<70
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Figure legends: 

Figure 1: Sample selection for 521 participants with complete data for model 

development including training, validation and testing set. An additional independent set 

with 1,346 participants with missing rate<70% among 271 features was also selected  

Figure 2: Prediction performance in validation sets among machine learning models for 

FSIQ<80 by receiver operating characteristic (ROC) curves 

Figure 3: Top 20 variable importance rankings by elastic net model predicting FSIQ<80, 

scaled to -100 to 100. The absolute value of ranks reflects the relative contribution to 

the prediction of the model. Variables with positive ranks are positively associated with 

lower IQ, while variables with negative ranks are negatively associated with lower IQ 

Figure 4: Prediction performance in initial testing set (n=104) by elastic-net model for 

FSIQ<80. a. Receiver operating characteristic (ROC) curves showing the area under 

the curve (AUC) is 0.888 in the testing set; b. Prediction probability cutoff by sensitivity 

and specificity. Final prediction probability cutoff of 0.45 would provide a sensitivity of 

0.744 and a specificity of 0.885 

Figure 5: Prediction performance in the additional independent set (n=1,346) by elastic-

net model for FSIQ<80. Receiver operating characteristic (ROC) curves showing the 

area under the curve (AUC) is 0.876. 

Supplementary Figure 1: Full Scale IQ, Nonverbal IQ and Verbal IQ are linearly 

correlated 

Supplementary Figure 2: Full Scale IQ, Nonverbal IQ and Verbal IQ are independent 

of age 
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Supplementary Figure 3: Full Scale IQ by cognitive and language measures by 

boxplot 

Supplementary Figure 4: Prediction performance in initial testing set by elastic-net 

model for FSIQ<70. a. receiver operating characteristic (ROC) curves showing the area 

under the curve (AUC) is 0.881 in the testing set; b. Prediction probability cutoff by 

sensitivity and specificity. Final cutoff of 0.35 would provide a sensitivity of 0.767 and a 

specificity of 0.838 

Supplementary Figure 5: Predicted FSIQ versus true FSIQ by elastic-net, support 

vector machines (SVM) and k-nearest neighbors (kNN) in the initial testing set (n=104) 

and in the additional independent set (n=1,346) 

Supplementary Figure 6: Prediction performance by missing rate in the additional 

independent set (n=1,346). Panels a, b panel show the AUC by missing rate based on 

the elastic-net model trained to predict cognitive impairment defined by FSIQ<80 (a) 

and FSIQ<70 (b). The grey dashed line is the AUC from the testing set in the model 

development (AUC=0.888 for FSIQ<0.8 and AUC=0.881 for FSIQ<0.7). Panel c shows 

the root mean square error (RMSE) by missing rate in the additional independent set 

compared to the testing set in model development, for three models predicting 

continuous FSIQ 
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