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CHD, which occurs in 1% of live births, has seen marked 
improvements in survival with modern surgical and medical 
management1. The decrease in infant mortality has increased 

CHD prevalence in older individuals and has exposed comorbidities 
that impair quality of life and life expectancy. Elucidation of CHD 
etiologies may improve outcomes, so the National Heart, Lung, 

and Blood Institute (NHLBI)-funded Pediatric Cardiac Genomics 
Consortium (PCGC) recruited >13,000 patients and utilized 
whole-exome sequencing (WES) and chromosome microarrays to 
study CHD genetic architecture. Our analyses identified damaging 
rare transmitted variants and DNVs in 8% of patients with sporadic 
CHD (including 28% of syndromic and 3% of isolated CHD)2–5. 
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A genetic etiology is identified for one-third of patients with congenital heart disease (CHD), with 8% of cases attributable 
to coding de novo variants (DNVs). To assess the contribution of noncoding DNVs to CHD, we compared genome sequences 
from 749 CHD probands and their parents with those from 1,611 unaffected trios. Neural network prediction of noncoding DNV 
transcriptional impact identified a burden of DNVs in individuals with CHD (n = 2,238 DNVs) compared to controls (n = 4,177; 
P = 8.7 × 10−4). Independent analyses of enhancers showed an excess of DNVs in associated genes (27 genes versus 3.7 
expected, P = 1 × 10−5). We observed significant overlap between these transcription-based approaches (odds ratio (OR) = 2.5, 
95% confidence interval (CI) 1.1–5.0, P = 5.4 × 10−3). CHD DNVs altered transcription levels in 5 of 31 enhancers assayed. 
Finally, we observed a DNV burden in RNA-binding-protein regulatory sites (OR = 1.13, 95% CI 1.1–1.2, P = 8.8 × 10−5). Our find-
ings demonstrate an enrichment of potentially disruptive regulatory noncoding DNVs in a fraction of CHD at least as high as 
that observed for damaging coding DNVs.
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Many DNVs identified in patients with CHD alter proteins that 
function in chromatin modification, regulation of transcription and 
RNA processing4.

On the basis of these findings, we reasoned that additional 
causes of CHD may reside in noncoding elements that are func-
tional during cardiac development. To explore this, we performed 
whole-genome sequencing (WGS) to identify single nucleotide vari-
ants (SNVs) and small insertions or deletions (indels) in 763 CHD 
trios comprised of affected probands and unaffected parents and 
in 1,611 child–parent trios without CHD. First, 14 CHD probands 
with previously undetected probable causal genetic variants were 
identified; then, we compared noncoding DNVs in the remaining 
cohort using three approaches. Two strategies focused on cardiac 
gene regulatory elements; one that used a neural network model 
that predicts variant-level resolution functional impact and the 
other that involved analysis of multiple DNVs in genes with human 
fetal heart enhancers that overlap cardiomyocyte differentiation 
open chromatin. We identified significant overlap between results 
from these complementary approaches and confirmed differences 
in transcription activity for 5 of 31 variants tested. Our third strat-
egy, which interrogated RNA processing, found significant enrich-
ment of noncoding DNVs in individuals with CHD (cases). Finally, 
we observed potentially contributory noncoding DNVs in isolated 
CHD probands as well as those with neurodevelopmental delays or 
extracardiac anomalies, suggesting varying degrees of cardiac speci-
ficity. Taken together, these results demonstrate a noncoding DNV 
contribution to CHD that is mediated through transcriptional and 
post-transcriptional regulatory effects on cardiac development.

Results
Trio cohort characteristics and sequencing. We performed WGS 
(30× coverage) on 763 CHD probands (311 with extracardiac 
anomalies and 452 with isolated heart malformations) and unaf-
fected parents enrolled by the PCGC (Supplementary Table 1a and 
phenotype summary in Supplementary Table 1b)2. Samples were 
subjected to WGS if prior WES studies5 failed to identify rare dam-
aging missense or loss-of-function coding variants in CHD genes 
(Supplementary Table 5). We also studied DNVs in 1,611 individu-
als without CHD or autism, who had siblings with autism, and their 
parents, from the Simons Simplex Collection6. To ensure accurate 
variant detection, DNVs were identified using the Genome Analysis 
Toolkit (GATK) and were further evaluated with FreeBayes7 local 
realignment, followed by classification by a neural network trained 
on Integrated Genomics Viewer (IGV) plots8 and manual curation 
of ambiguous variants (Methods; Supplementary Tables 2 and 3). 
PCR-based Sanger sequencing validated 98% of 266 de novo SNVs 
and 94% of 83 de novo indels in cases. In controls, 94% of de novo 
SNVs were present in at least one published analysis (Extended Data 
Fig. 1)9,10. We identified a mean of 71 de novo SNVs and 5 de novo 
indels per CHD proband (58,090 DNVs) and 68 de novo SNVs and 
5 de novo indels per control individual (117,344 DNVs), which is 
consistent with WGS data obtained on similar platforms and with 
similar coverage11.

As expected, the number of DNVs per individual correlated with 
paternal (βCHD = 1.4, PCHD = 5 × 10−54; βcontrol = 1.4, Pcontrol = 6 × 10−86) 
and maternal (βCHD = 0.5, PCHD = 2 × 10−5; βcontrol = 0.4, Pcontrol =  
3 × 10−8) ages (multiple variable linear regression; Extended 
Data Fig. 2)11,12. SNVs drove this association, but there was also a 
de novo indel association with paternal (βCHD = 0.07, PCHD = 2 × 10−4; 
βcontrol = 0.05, Pcontrol = 3 × 10−4) but not maternal (βCHD = 0.01, 
PCHD = 0.6; βcontrol = 0.03, Pcontrol = 0.1) age13. Without parental age 
adjustment, cases had more DNVs per individual than did controls 
(P = 2 × 10−9, two-sided Student’s t-test), but this was not the case 
after adjustment (P = 0.1). To account for this difference, compari-
sons were made with respect to the total number of DNVs in CHD 
probands and controls.

Coding de novo variants identified by whole-exome sequencing 
and whole-genome sequencing. WES data were available for 612 
of 763 CHD probands4,5. Among 628 coding DNVs, including 582 
within WES capture regions (lifted over14 to hg38), both WES and 
WGS identified 509 (81%), whereas 38 of 69 DNVs called only by 
WES were confirmed by WGS IGV visualization (Supplementary 
Note). Fifty coding DNVs identified solely by WGS (8%; 0.08/pro-
band) included 4 within and 46 outside WES capture regions. One 
DNV that was initially called by WES was removed for low read 
depth; three were not called by WES but were confirmed by WES 
IGV visualization.

These analyses defined damaging DNVs in established CHD 
genes (PTPN11, NOTCH1 (n = 2), FBN1, FLT4, NR2F2 and 
GATA4), and identified six individuals with 22q11 copy number 
variants and one with trisomy 21. The proband with a previously 
reported pathogenic FBN1 DNV in exon 42 (1-00761) had mitral 
stenosis, brachycephaly, short stature and other features consistent 
with geleophysic dysplasia (MIM 614185), 50% of cases of which 
are caused by damaging DNVs in FBN1 exon 41 or 42. Damaging 
DNVs in known CHD genes were confirmed with reference-free 
DNV calling (Methods) and IGV visualization. Six potentially 
damaging DNVs were identified in candidate CHD genes, includ-
ing one insertion that was detected only with reference-free call-
ing (Supplementary Table 4), but these individuals were retained 
for noncoding analyses. Following the exclusion of probands with 
probable causal genetics, 749 CHD probands were analyzed for 
noncoding DNVs.

Quantitative burden with categorical de novo variant classifica-
tions. We observed no noncoding DNV enrichment in 749 CHD 
trios for DNVs that are associated with human (n = 210) or mouse 
(n = 614) CHD genes or genes that are highly expressed in heart 
development (n = 4,420) (Supplementary Tables 5 and 6). Similarly, 
we observed no enrichment in noncoding cardiac regulatory features 
comprising transcription factor binding sites (nhuman = 8, nmouse = 45), 
histone marks (nhuman = 45, nmouse = 60) and DNase hypersensitivity 
sites (nhuman = 23, nmouse = 3) assayed on cardiac cells (nhuman = 15), 
prenatal or fetal heart tissue (nhuman = 26, nmouse = 34) and postnatal 
heart tissue (nhuman = 35, nmouse = 74) (Methods; Extended Data Fig. 3 
and Supplementary Table 7)15–32.

Qualitative burden with HeartENN. As we found no genome-wide 
significant DNV burden in global regions of cardiac transcrip-
tional regulation among CHD probands, we predicted impact with 
variant-level resolution. We developed HeartENN (Heart Effect 
Neural Network; Fig. 1), an extension of DeepSEA33, which pre-
dicts molecular effect differences between any two alleles for every 
regulatory feature by using convolutional neural networks. Another 
DeepSEA extension successfully identified noncoding DNV enrich-
ment in autism9. HeartENN was trained on a 1,000-bp genomic 
sequence context with the same 184 cardiac noncoding regulatory 
features that were used for previous region-based burden tests, 
but not those that were used for subsequent multiple-hit analy-
sis (Methods; Supplementary Table 7). Aside from using cardiac 
epigenomic training data and extending these to mouse features, 
HeartENN is similar to DeepSEA. The HeartENN mean receiver 
operator characteristic area under the curves (ROC AUCs) for 
mouse and human features were 0.9 and 0.85, respectively, similar 
to the ROC AUCs of DeepSEA; the area under the precision-recall 
curves were also comparable (Extended Data Fig. 4). We restricted 
our analysis to heart-related features and defined no other hypothe-
ses of relevance to CHD. The maximum functional difference score 
observed in any feature was assigned to each DNV (Supplementary 
Table 8).

We defined a range of scores relevant to congenital defects 
by contrasting maximum functional difference scores between 
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Human Gene Mutation Database (HGMD) regulatory mutations 
(n = 1,564), inclusive of congenital defect pathogenic variants, and 
regulatory polymorphisms (n = 642). Because these variants occur 
in individuals with diverse malformations, we evaluated signals 
using DeepSEA9,33, which is generalizable to multiple organ sys-
tems. Pathogenic variants, but not polymorphisms, had an excess 
of DeepSEA scores ≥0.1 (Extended Data Fig. 5a). As we lacked an 
equivalent dataset of CHD noncoding variants with which to evalu-
ate HeartENN, we compared the DeepSEA and HeartENN null dis-
tributions. After randomly down-sampling DeepSEA to match the 
number of HeartENN annotations and applying HGMD polymor-
phism scores, we observed similar null distributions for HeartENN 
and DeepSEA (Extended Data Fig. 5b). We therefore set HeartENN 
scores of ≥0.1 as potentially biologically meaningful for CHD.

The majority (>96%) of DNVs had HeartENN scores <0.1, 
which suggests that there is little functional impact from most 
variants. CHD cases were enriched for HeartENN scores ≥0.1 
(n = 2,238 DNVs in CHD, n = 4,177 DNVs in controls, Fisher’s 
exact test P = 8.7 × 10−4, OR = 1.09, 95% confidence interval (CI) 
1.04–1.15, attributable risk (AR) = 183/2,283 DNVs). We tested 
enrichment across multiple cut-off points, and observed (1) no 
marginal (P < 0.05) significance in controls at any cut-off, (2) higher 
ORs with stricter thresholds (Fig. 2a and Supplementary Table 9), 
and (3) significance when all thresholds were accounted for (Fig. 2b;  
permutation P = 1.7 × 10−3, 10,000 permutations). Above 0.25, we 
observed consistent positive effect sizes despite decreased sample 
sizes, which suggests a lack of power with more stringent thresh-
olds. To test whether the signal was consistent across function-
ally significant HeartENN scores, we placed every DNV into 
0.02-HeartENN-score bins. We calculated the difference in fraction 
of DNVs in every 0.02 bin (Fig. 2c) and observed a strong propen-
sity toward cases across bins.

We tested whether other noncoding variant prioritization meth-
ods ranked HeartENN-damaging (score ≥ 0.1) variants as patho-
genic. There was statistically significant support from all algorithms 
tested (LINSIGHT34, CADD35,36, DeepSEA9,33, GERP++ (ref. 37) and 
GWAVA TSS38) (Extended Data Fig. 6). We observed a case–control  

burden with CADD ≥ 15 (PBonferroni = 0.019), albeit without a dose- 
response relationship or cardiac-relevant interpretation.

Gene set enrichment of DNVs with HeartENN ≥ 0.1 upstream 
or downstream (<1 kb) or within 5′-UTR, intronic or 3′-UTR 
sequences showed enrichment of known human CHD genes in 
cases (Fig. 2d and Supplementary Table 10; n = 18/959 genes in 
cases and n = 10/1,704 genes in controls, OR = 3.2, 95% CI 1.4–7.9, 
hypergeometric one-sided P = 5.7 × 10−4). Notably, one proband 
with isolated CHD had a DNV (maximum HeartENN score 0.15, 
ID 1-07589) within a previously validated GATA4 enhancer with 
heart-constrained activity (Vista ID hs2205, heart-specific in 6 of 7 
embryonic day (E)11.5 embryos)27.

Burden of genes with multiple de novo variants in human fetal 
cardiac enhancers. A second approach involved the interrogation of 
noncoding DNVs and focused on regions that were experimentally 
implicated in human cardiac developmental gene expression regu-
lation. This strategy harnessed 31,555 human fetal heart enhancers 
identified by H3K27ac chromatin immunoprecipitation (ChIP) of 
human fetal cardiac tissues (8–17 weeks post-conception; Methods). 
None was included in the HeartENN analysis. We intersected these 
fetal cardiac enhancers with open chromatin sequences obtained 
by assay for transposase-accessible chromatin using sequencing 
(ATAC–seq) during the differentiation of human induced pluripo-
tent stem cells into cardiomyocytes (hiPSC–CMs). On the basis of 
prototypic gene expression, ATAC–seq was performed at two dif-
ferentiation states: cardiac mesoderm (day 8; 155,989 ATAC peaks) 
and primordial cardiomyocytes (day 17; 62,326 ATAC peaks). The 
subset of ATAC peaks that overlapped cardiac enhancers defined 
21,618 prioritized human fetal heart enhancers (Supplementary 
Table 11). We assessed these sequences for DNVs.

Among the prioritized human fetal heart enhancers, we iden-
tified 2,427 DNVs in CHD cases and 5,160 DNVs in controls 
(Fisher’s exact P = 1; Supplementary Table 12). Assignment of near-
est genes defined 1,793 genes in CHD cases and 3,195 genes in con-
trols. Among CHD cases, 27 genes were marginally enriched for 
DNVs. No gene was enriched for DNVs in controls (Fig. 3a and 
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Fig. 1 | Analysis schematic. Overview of the approach to identifying a noncoding de novo variant burden in CHD. TF, transcription factor; DHS, DNase 
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Supplementary Table 13). In 105 permutations of randomly assigned 
case or control status, fewer genes exhibited DNV enrichment than 
was observed (P < 1 × 10−5; Fig. 3b).

These 27 genes were associated with 99 case DNVs and 13 con-
trol DNVs (Supplementary Table 14). Nine case DNVs (but none 
in controls) had HeartENN scores ≥0.1 (Supplementary Table 14),  
which is significantly more than the <4% expected by chance 
(one-sided hypergeometric P = 5.4 × 10−3; Fig. 3c). Significance was 
assessed using the null hypothesis of proportional overlap, which 
was appropriate, as the HeartENN analysis used different cardiac 
epigenomic data from the prioritized human fetal heart enhanc-
ers. Ten of the 27 genes that were enriched for DNVs in prioritized 
human fetal heart enhancers were highly expressed in E14.5 mouse 
hearts (P = 0.06): COL1A2, MAPRE2, SEPTIN11, PSMA7, SORBS1, 
RPL25P1, FILIP1, MITF, SUN1 and ATE1 (Supplementary Table 
13). Twelve genes (FNIP1, COL1A2, MITF, MAPRE2, PSMA7, 
LRRTM2, NAB1, SUN1, SEPTIN11, MARCHF3, RPL29 and ATE1) 
had a modest probability of loss-of-function variant intolerance 
(pLI) of >0.5 (P = 0.03), on the basis of variant prevalence in the 
Exome Aggregation Consortium (ExAC)39. One gene (COL1A2) 
was observed at the intersection of these findings: it includes a 
HeartENN ≥ 0.1 DNV, has a high pLI and is highly expressed dur-
ing mouse heart development. COL1A2 encodes a collagen that is 
highly expressed in developing cardiac valves36. Among the seven 
individuals with COL1A2-associated human fetal heart enhancer 
DNVs, all had pulmonary and/or aortic valve abnormalities, which 
indicates an enrichment trend compared to the 742 participants 
without such DNVs (486/742, P = 0.05).

Functional effects of de novo variation on transcriptional activ-
ity. We assessed the potential transcriptional effects of 31 DNVs 
(Fig. 4a) that were identified by HeartENN, and/or the prioritized 

human fetal heart enhancers, using massively parallel reporter 
assays (MPRAs)40. Paired sequences (300–1,600 bp) containing ref-
erence or DNV sequences were synthesized and introduced into 
a pMPRA1 plasmid. At least three independent plasmid libraries 
were produced and transfected into multiple wells of iPSC–CMs 
at differentiation day 17 or day 37. Transcriptional activity was 
assessed by comparing RNA and DNA test sequence reads per well. 
We observed no significant differences in transcriptional activity 
by construct length (Extended Data Fig. 7). Five of 31 construct 
pairs showed significant mean differences between the reference 
and DNV sequences for at least three replicates (Fig. 4; two-sided 
Student’s t-test, Benjamini–Hochberg-adjusted P < 0.05), including 
two DNVs that increased transcriptional activity. Two additional 
pairs showed transcriptional differences between DNV and refer-
ence sequences for two replicates, but no overall statistical signifi-
cance (Extended Data Fig. 8). These seven MPRA-positive variants 
were among 18 that were identified by both HeartENN (score ≥ 0.1) 
and prioritized human fetal heart enhancers or by HeartENN 
(score ≥ 0.1) and ATAC–seq peaks. Among 13 variants that were 
selected with a single bioinformatic approach, none reproducibly 
showed significant MPRA differences.

Post-transcriptional regulatory enrichment. In addition to 
transcriptional regulatory disruption, we tested the effect of non-
coding DNV enrichment on post-transcriptional regulation. RNA- 
binding proteins (RBPs) mediate post-transcriptional regulation 
through pre-mRNA splicing, transport, localization, degrada-
tion and translational control. We obtained 160 RBP enhanced 
cross-linking immunoprecipitation (eCLIP) datasets from two 
ENCODE cell lines15. Because there are no cardiac eCLIP data, we 
inferred transcriptionally active cardiac binding sites by overlap-
ping the human fetal heart H3K36me3 active transcription mark 
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(used in HeartENN) and human embryonic stem cells (not used in 
HeartENN or prioritized human fetal heart enhancers). We used 
this narrower RBP binding site definition to test the noncoding bur-
den for all 162 annotation combinations (Fig. 5a). These included 
the following: H3K36me3 histone mark, SNV and/or indel, con-
strained or haploinsufficient gene proximity, and transcription start 
site (TSS) or 3′-UTR anchor. The number of independent tests, 
determined with eigenvalue decomposition, was used to determine 
the Bonferroni P value multiple testing adjustment41. This provided 
105 independent tests with significance threshold P = 4.76 × 10−4.

We observed a significant enrichment of RBP DNVs overlap-
ping H3K36me3 marks (Fig. 5b,c). The most significant result 
was that of RBP variants overlapping H3K36me3 in ES-UCSF4 
stem cells (OR = 1.13, 95% CI 1.1–1.2, two-sided Fisher’s exact  
test P = 8.77 × 10−5, 1,672 case DNVs; Supplementary Table 15). 

The signal was statistically significant for multiple embryonic stem 
cell types and when limited to constrained genes or TSS proximity. 
When these biologically relevant features were intersected, the larg-
est statistically significant effect size was obtained (OR = 1.3, 95% 
CI 1.1–1.5, P = 2.68 × 10−4, 327 case DNVs).

We tested variant-level intersections between these 
post-transcriptional and transcriptional regulatory results. For the 
most significant RBP-implicated DNVs, there was a statistically 
significant overlap with DNVs in prioritized human fetal heart 
enhancers in cases (n = 10, OR = 3.6, 95% CI 1.9–∞, hypergeometric 
one-sided P = 2.1 × 10−4) but not in controls (n = 0). There was no sig-
nificant overlap between RBP-implicated and HeartENN-damaging 
(score ≥ 0.1) DNVs in cases (n = 78, OR = 1.21, 95% CI 1.0–∞, 
P = 0.05) or controls (n = 122, OR = 1.12, 95% CI 0.9–∞, P = 0.10). 
By contrast, for RBP-implicated DNVs in constrained regions, we 
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observed only one case DNV that intersected with prioritized fetal 
human heart enhancers and we observed a statistically significant 
overlap with HeartENN-DNVs in cases (n = 19, OR = 1.52, 95% 
CI 1.0–∞, P = 0.033) but not in controls (n = 16, OR = 0.86, 95% 
CI 0.5–∞, P = 0.7). Thus, in addition to transcriptional regulatory 
disruption, we found evidence that disturbed post-transcriptional 
regulation machinery may contribute to CHD.

Distribution of noncoding de novo variants in canonical vari-
ant classes. We characterized DNVs in canonical variant classes 
(intronic, promoter, UTR and so on) for HeartENN-damaging 
(score ≥ 0.1) DNVs, prioritized human fetal heart enhancer 
multiple-hit DNVs and post-transcriptional regulatory-disrupting 
DNVs (Extended Data Fig. 9). The majority of DNVs that were not  
identified by any bioinformatic method were intergenic (52% in 
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cases and 52% in controls). By contrast, variants that were priori-
tized by the three methods were more likely to be intronic, with 
over-representation among other canonical categories depending on 
the method. This provides additional evidence that CHD-associated 
noncoding DNVs may have functional effects.

Recurrently implicated genes with noncoding de novo variants.  
Among the union of implicated noncoding DNVs (HeartENN- 
damaging DNVs (2,238 cases and 4,177 controls), prioritized 
human fetal heart enhancer multiple-hit DNVs (99 cases and 13 
controls) and post-transcriptional regulatory-disrupting DNVs 
from all seven Bonferroni-significant enrichments (2,149 cases 
and 3,963 controls)), 25 genes were recurrently implicated (unad-
justed two-sided binomial P < 0.05) (Supplementary Table 16). 
High-interest genes were identified with haploinsufficiency con-
straint (pLI > 0.5 or missense Z-score > 3), high mouse E14.5 heart 
expression rank, human or mouse CHD gene membership and 
CHD-associated KEGG pathway membership. Results included 
two human CHD genes, but corresponding probands did not have 
the characteristic CHD phenotype of pulmonic stenosis. Candidate 
genes included SHOC2 (human CHD gene and constrained), 
ZNRF3, CPSF3 (CHD-associated KEGG pathway and constrained) 
and MAP4K4 (96th percentile embryonic heart expression and 
constrained).

Association between candidate noncoding de novo variants and 
neurodevelopmental disorders or extracardiac anomalies. We 
tested whether implicated noncoding DNVs were associated with 

the following phenotypic subgroups: isolated CHD (n = 298), CHD 
with neurodevelopmental disorders (NDD) (n = 267) or CHD with 
extracardiac anomalies (ECA) (n = 305). Compared to probands 
with WES-identified damaging DNVs in highly expressed cardiac 
genes, CHD probands with DNVs in the 27 genes associated with 
prioritized human fetal heart enhancers had a lower frequency 
of NDD (odds 20/53 versus 113/119; OR = 0.40, 95% CI 0.2–0.7, 
P = 0.002) but a similar prevalence of ECA (34/39 versus 173/184; 
OR = 0.92, 95% CI 0.5–1.6, P = 0.87).

In contrast to probands with prioritized human fetal heart 
enhancer DNVs, most probands had at least one HeartENN- 
damaging (score ≥ 0.1) DNV, and presumably only a minority 
would be associated with CHD. Therefore, we tested phenotype 
associations by comparing HeartENN-damaging DNV enrichment 
within subgroups to that in controls (Extended Data Fig. 10a). A 
consistent enrichment was observed across all subgroups. We then 
tested the hypothesis that the parent algorithm, DeepSEA, which 
previously implicated noncoding DNVs in autism9, would also 
identify a burden in CHD cases with NDDs. No significant associa-
tion was observed, but the highest effect size was observed for CHD 
with NDDs (OR = 1.05, 95% C.I. 1.0–1.1, two-sided Fisher’s exact 
test P = 0.18). A similarly consistent enrichment within subgroups 
was observed for RBP-implicated DNVs (Extended Data Fig. 10b).

Contribution to congenital heart disease. We estimated the mean 
AR to CHD in the WES-negative cohort across all three methods 
(Methods), assuming at most one causal, functional DNV per pro-
band. HeartENN-damaging (score ≥ 0.1) DNVs contributed to a 

Feature combination Variants Hits, cases Hits, controls n1 (cases) n0 (controls) OR 95% CI P value
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TSS RBP H3K36me3 in H1 cells SNVs 686 1,169 52,004 106,438 1.20 (1.09, 1.32)  1.55 × 10 4

TSS RBP H3K36me3 in ES-UCSF4  cells SNVs 740 1,274 52,004 106,438 1.19 (1.09, 1.31) 1.94 × 10 4

Constrained TSS RBP H3K36me3 in H1 cells SNVs 327 516 52,004 106,438 1.30 (1.13, 1.50) 2.68 × 10 4

RBP H3K36me3 in ES-UCSF4  cells SNV + indel 1,797 3,291 55,827 113,467 1.11 (1.05, 1.18) 3.13 × 10 4

TSS RBP H3K36me3 in HUES64 cells SNVs 713 1,231 52,004 106,438 1.19 (1.08, 1.30) 3.20 × 10 4

RBP H3K36me3 in H1 cells SNVs 1,568 2,874 52,004 106,438 1.12 (1.05, 1.19) 4.10 × 10 4
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maximum of 24% of cases of CHD in this cohort, and enrichment 
decreased with increasing HeartENN cut-offs (11% attributed to 
HeartENN ≥ 0.2 and 2.9% attributed to HeartENN ≥ 0.3). This 
resulted in a final HeartENN contribution range of 3–24%. DNVs 
in prioritized human fetal heart enhancers contributed to 12.1% 
of cases of CHD, including 1.1% that was attributable to shared 
HeartENN ≥ 0.1 DNVs. Lower percentages for DNVs associ-
ated with genes with pLI > 0.5 (5.4%) or high embryonic mouse 
heart expression (3.8%) resulted in a contribution range of 4–12%. 
Finally, DNVs that were implicated in post-transcriptional dis-
ruption contributed to 10% of CHD in this cohort. Although the 
cumulative percentage mean attributed risk (17–45%) suggests that 
a substantial contribution is made by DNVs in WES-negative CHD, 
these estimates must be refined in future studies. In summary, the 
fraction of CHD cases with contributory noncoding predicted  
functional DNVs in this WES-negative cohort is at least as high as 
the fraction of CHD cases with damaging coding DNVs identified 
with WES.

Discussion
Noncoding variants remain potential contributors to disorders 
with unexplained genetics. Using WGS, we tested this hypothesis 
through systematic examination of noncoding regulatory elements 
in a mutation-negative CHD cohort. We, like others41–44, observed 
a lack of significant findings across broad noncoding annotation 
categories. By contrast, our alternative interrogation of noncoding 
variants implicated noncoding DNVs in CHD pathogenesis.

HeartENN, which provides variant-level scores, as does the 
multifaceted DeepSEA algorithm that uncovered noncoding 
DNVs in autism9, defined significantly more DNVs in CHD pro-
bands. Separate analyses of prioritized human fetal heart enhanc-
ers identified distinct and some overlapping DNVs in CHD cases. 
Notably, functional assays were positive when these two strategies 
were combined. Although there was no transcriptional regula-
tory category-wide burden, we observed a Bonferroni-significant 
category-wide burden among heart-transcribed RBP binding sites. 
These data implicate noncoding DNVs in CHD at both the tran-
scriptional and post-transcriptional regulatory levels. Our ability to 
detect signals was strongly influenced by the availability of cardio-
vascular development noncoding genomic data, which permitted us 
a narrow search space for DNV interrogation.

Through the two cardiac regulatory element strategies and their 
significant overlapping results, we identified known and potential 
human CHD genes. HeartENN-damaging variants were enriched 
for known human CHD genes (for example, GATA4 and OFD1), 
but there was little concordance between observed and reported 
cardiac/extracardiac phenotype constellations. Only one of seven 
genes identified with both approaches is implicated in heart devel-
opment: COL1A2 encodes a collagen that is highly expressed in 
developing cardiac valves45, and all seven probands with noncod-
ing COL1A2 DNVs had pulmonary and/or aortic valve abnormali-
ties. Whether the other overlapping genes represent novel CHD 
genes or poor understanding of the genic regulation of noncoding 
DNVs remains uncertain. Among 20 nonoverlapping genes with 
multi-DNV enrichment in prioritized human fetal heart enhanc-
ers, 4 are implicated in heart development: ATE1 depletion causes 
CHD in mice46; LRRTM2 resides within a CHD-associated region47; 
MITF regulates GATA4 expression48,49; and RPL29 encodes a target 
of LSD, a demethylase whose depletion causes CHD in mice50,51. 
Other gene associations include cardiomyopathy (FNIP1)52, stri-
ated muscle disorders (SUN1)53,54 and mouse embryonic lethality 
(SEPTIN11)55. When considering the union of transcriptional and 
post-transcriptional variants, SHOC2, CPSF3, ZNRF3 and MAP4K4 
regulatory regions were consistently identified.

Among 31 DNV-containing sequences that were functionally 
tested in iPSC–CMs, 5 (16%) significantly altered transcription. 

Whereas that rate is consistent with bioinformatic enrichment 
analyses, there are reasons to consider this a lower bound. The 
sequences were only tested in fetal cardiomyocytes at two time 
points using minimal promoters not in their native genomic con-
text. Oligogenetic effects were not modeled in this functional assay. 
Genes associated with the five positive DNVs provide clues regard-
ing CHD causality. JPH2 encodes junctophlilin-2, a membrane 
protein necessary for T-tubule formation, for which an N-terminal 
cleavage fragment modulates MEF2-mediated gene transcrip-
tion, altering ERK and TGF-β signaling56. SEMA4B is in the top 
quartile for gene expression in the developing heart and encodes 
a semaphorin that signals through plexin receptors. Perturbations 
in semaphorin–plexin signaling can lead to CHD57,58. Future stud-
ies of additional DNVs incorporating more complex models will be 
needed to elaborate CHD pathogenesis precisely.

Our cohort was selected for WES-negative trios and higher 
paternal age to increase statistical power to identify a noncoding 
and de novo signal, respectively. Among this CHD cohort, we esti-
mated that the fraction of individuals harboring noncoding pre-
dicted functional DNVs that contribute to CHD is at least as high 
as the fraction of CHD cases with contributory coding DNVs. We 
observed consistent results in isolated CHD cases and in those 
with NDDs or ECAs, which is distinctly different from the NDD 
and ECA enrichment among CHD probands with damaging cod-
ing DNVs. For the prioritized human fetal heart enhancer DNVs, 
this manifested as depletion in the number of patients with CHD 
and NDD compared to those with WES-implicated coding DNVs. 
These results could be explained by cardiac-specific effects in at 
least a subset of DNVs, which suggests that future work could build 
on the cardiac relevance described here with a focus on cardiac 
specificity. The implicated GATA4 enhancer in a proband with iso-
lated CHD illustrates the potential to uncouple frequently associ-
ated phenotypes through cardiac-selective regulatory effects.

Although our findings established that noncoding DNVs con-
tribute to CHD pathogenesis, the relevant genetic mechanisms 
remain to be explored. Previous studies of rare coding variants 
suggested that some are sufficient to engender CHD (that is, by a 
Mendelian genetic model), whereas many others are associated with 
incomplete penetrance, which suggests greater genetic complexity 
(for example, an oligogenic model) and/or environment effects59. 
Whereas noncoding DNVs that contribute to CHD could act in 
a simple Mendelian manner (for instance, substantially reducing 
allelic expression), more modest gene expression effects would be 
congruous with an oligogenic mechanism. Future studies of non-
coding variants observed in CHD are needed to establish transcrip-
tional effect sizes and their ability to perturb heart development 
individually and in concert with other relevant factors.

These data systematically associate human CHD with cardiac 
regulatory DNVs. Our findings highlight the potential of WGS to 
more fully elucidate the genetic architecture of CHD. Extension of 
the statistical framework used is likely to define additional noncod-
ing variants in CHD. When this strategy is applied to larger cohorts, 
we expect to refine the magnitude of noncoding effects and to 
investigate complex CHD genetics, such as epistatic and pleiotropic 
effects of noncoding and coding variants.
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Methods
Participants. Pediatric Cardiac Genomics Consortium. Patients with structural 
CHD and their parents (n = 763 trios) were enrolled in the PCGC Congenital 
Heart Disease Network Study (CHD GENES: ClinicalTrials.gov identifier 
NCT01196182)2. The protocols were approved by the Institutional Review Boards 
of Boston’s Children’s Hospital, Brigham and Women’s Hospital, Children’s 
Hospital of Los Angeles, Children’s Hospital of Philadelphia, Columbia University 
Medical Center, Great Ormond Street Hospital, Icahn School of Medicine at 
Mount Sinai, Rochester School of Medicine and Dentistry, Steven and Alexandra 
Cohen Children’s Medical Center of New York and Yale School of Medicine. 
All participants or their parents provided informed consent. Individuals with 
a chromosomal aneuploidy, copy number variation associated with CHD or 
probable causal variant identified with WES were excluded. The echocardiogram, 
catheterization and operative reports were reviewed to determine cardiac 
phenotypes. Extracardiac structural anomalies were obtained from the medical 
records. Patients were classified as having neurodevelopmental disorders (NDDs) 
if parents reported the presence of developmental delay, learning disability, mental 
retardation or autism for individuals at least 12 months old.

Controls. Controls comprised 1,611 sibling–parent trios, unaffected by CHD or 
autism, derived from sporadic autism quartets that consisted of one offspring 
with autism, one unaffected sibling and their unaffected parents6. Controls were 
ascertained from 1,627 siblings after excluding 16 with a past medical history 
that included CHD. The Simons Foundation kindly provided the phenotypic and 
genomic data for these unaffected trios.

Whole-genome sequencing and variant identification. DNA from the PCGC 
samples was sequenced at the Baylor College of Medicine Genomic and RNA 
Profiling Core (n = 900), the New York Genome Center (NYGC) Genomic 
Research Services (n = 75), and the Broad Institute for Genomic Services 
(n = 1,314) following the same protocol. Genomic DNA from venous blood 
or saliva was prepared for sequencing using a PCR-free library preparation 
(n = 2,289) or SK2-IES library preparation (n = 75, Broad Institute). All samples 
were sequenced on an Illumina Hi-Seq X Ten system with 150-bp paired reads to 
a median depth of >30× per individual. The controls were prepared in a manner 
similarl to that of cases. Specifically, the controls were sequenced at NYGC 
(n = 4,833) with 150-bp paired reads and a median depth of >30× per individual, 
using either a PCR-based library preparation on an Illumina Hi-Seq 2000 (n = 114) 
or a PCR-free library preparation on an Illumina Hi-Seq X Ten (n = 4,719). 
Previous Simons Simplex Collection sequencing of controls was performed at 
NYGC on the Illumina Hi-Seq 2500 (n = 120) or the Illumina Hi-Seq X Ten 
(n = 4,761) to >30× coverage with 150-bp paired reads.

For both cases and controls, reads were aligned to GRCh37 or GRCh38 
with the Burrows-Wheeler Aligner (BWA-MEM)60. GATK best practices 
recommendations were implemented for base quality score recalibration, indel 
realignment, and duplicate removal61. Standard hard filtering parameters were used 
for SNV and indel discovery across all 763 PCGC and 1,611 control trios, followed 
by N + 1 joint genotyping and variant quality score recalibration62,63.

Identification and confirmation of de novo variants. DNV identification was 
performed for both cases and controls by pooling three pipelines from PCGC 
members at Mount Sinai, Columbia and Harvard. Mount Sinai used two tiers; a 
high stringency tier and a low stringency tier. High stringency tier parameters were 
as follows: GATK PASS (that is, variants were classified as true with an adaptive 
error model based on known true sites and artifacts); heterozygous ratio (AB) set 
to 0.3–0.7 in the proband; homozygous ratio (AB) less than 0.01 in both parents; 
depth (DP) ≥ 10; joint genotyping allele count (AC) = 1 across all trios; genotype 
quality (GQ) > 60 (proband and parents); alternate allele depth (AAD) > 7 in the 
proband and AAD < 3 in each parent. The lower tier consisted of de novo calls that 
fell outside the higher tier and that did not fail the following filters: GATK PASS; 
heterozygous AB set to 0.2–0.8; DP = 7–120; AC = 1 in all trios; GQ > 60 (proband); 
GQ > 30 (parents) and AAD > 7. At Columbia, parameters for DNV identification 
were as follows: heterozygous or homozygous for the alternate allele in the proband; 
homozygous for the reference allele in the parents; not in a multiallelic site (3 or 
more); AC ≤ 2 in the cohort; Fisher’s exact test strand bias (FS) < 25; variant quality 
by depth (QD) > 2 for SNVs and QD > 1 for indels; ReadPosRankSum > −3 for 
indels; proband genotype Phred-scaled likelihood (PL) ≥ 70; proband AAD ≥ 6; 
proband heterozygous AB ≥ 0.28 if AAD ≥ 10 or heterozygous AB ≥ 0.20 if AAD < 10; 
parental GQ ≥ 30; parental DP ≥ 10; parental AB < 0.035 and a population frequency 
of <0.1% (in the 1000 Genomes, Exome Sequencing Project and ExAC populations). 
For the third pipeline, at Harvard, the parameters were as follows: AC = 1; DP = 7–64 
inclusive; ADD ≥ 5; heterozygous AB = 0.2–0.8 inclusive and homozygous AB ≤ 0.1. 
Putative de novo calls near indels, in a homopolymer indel or in a dinucleotide 
repeat were subsequently visually filtered with IGV. After consolidation of de novo 
calls, all variants were force-called with FreeBayes7. GATK and FreeBayes both 
perform local realignment. GATK uses a combination of known common variants, 
indels and entropy calculations to generate log of the odds ratio (LOD) scores for 
alternative consensus sequences, replacing original alignments if LOD scores are 
higher. FreeBayes generalizes this Bayesian caller approach to allow for multiallelic 

loci and non-uniform copy number across samples, and the combination of GATK 
and FreeBayes variant calling was previously reported to improve the positive 
predictive value of indel identification to >97% (ref. 64). Therefore, FreeBayes variant 
calling was performed on GATK-identified DNVs to reduce false-positive variants. 
DNVs that occurred in the high evidence tier at Mount Sinai, but which were 
false with FreeBayes, were manually reviewed. Finally, IGV plots of all the putative 
DNVs were passed through an eight-layer convolutional neural network trained on 
curated IGV plots, and were classified into six categories (de novo SNVs, de novo 
insertions, de novo deletions, complex, uncertain and false positives)8. Predicted 
false positives were excluded. Predicted de novo insertion, deletion, complex and 
uncertain events were subject to further manual inspection to remove additional false 
positives. DNVs with ExAC allele frequency > 0.1% as well as DNVs in nonstandard 
chromosomes, segmental duplications (score ≥ 0.99), low complexity regions, low 
mappability (300 bp, score < 1) regions, mucin or human leukocyte antigen genes, 
and ENCODE-blacklisted sites were removed15,65–67. Finally, all DNVs within 50 bp in 
the same proband were considered to be a single event (that is, a mutation cluster) for 
region-based and multiple-hit enrichment tests. DNVs identified using the GRCh37 
genome assembly were lifted over to GRCh38 (ref. 14). Sanger sequencing validation 
was performed for 266 de novo SNVs and 83 de novo indels.

Reference-free calling to identify candidate coding de novo variants. An 
alternative, reference-free DNV calling algorithm, RUFUS (https://github.com/
jandrewrfarrell/RUFUS)68, was also used to call de novo variants in PCGC 
probands. In brief, RUFUS compares the k-mer sequences directly from the raw 
Illumina reads of the proband–parent trio to identify unique DNA sequences 
present in the child that represent de novo genetic variation. Sequencing reads that 
contain these unique k-mer sequences are assembled using an inbuilt sequence 
assembler. Assembled contigs, which contain the de novo allele, are mapped 
back to the human reference sequence for localization, using the BWA algorithm. 
RUFUS then interprets the aligned contigs to produce a VCF-formatted variant 
report. All types of de novo variation (SNVs, short indels and structural variants of 
all types) are identified in a single run of the program.

Gene sets. The three gene sets used in this study were genes in which coding 
mutations cause isolated or syndromic CHD in humans (human CHD genes), 
genes for which mouse knockdowns or knockouts are associated with CHD 
(mouse CHD genes) and the top quarter of expressed genes during heart 
development (high heart expression genes)3,4. To generate the mouse CHD gene 
set, mammalian phenotype ontology terms of potential relevance to CHD were 
identified. These were reviewed to remove cardiovascular terms that were not 
specific to CHD, such as cardiac dilation/hypertrophy, arrhythmias and coronary 
artery disease69. Data on the mouse strains associated with these mammalian 
phenotype ontology terms were downloaded (http://www.mousemine.org/
mousemine). Only single-gene transgenic mutant mouse strains were kept, and 
these mouse genes were converted to their human orthologs (ftp://ftp.informatics.
jax.org/pub/reports/HOM_MouseHumanSequence.rpt).

Multiple hypothesis testing correction for region-based test. The P value threshold 
was determined by correcting for the number of independently tested hypotheses. 
Because the 184 noncoding features were highly correlated (Supplementary Fig. 1), 
the number of independent hypothesis tests was set as the number of eigenvectors 
that explain ≥99% of the variance in the correlations between the features41. A P value 
was simulated for all pair-wise correlations between features. The simulated P value 
was equal to the fraction of 10,000 permutations with a more extreme correlation 
than that of the observed value. The observed value was calculated according to 
the overlap between DNVs and features. For each permutation, a random feature 
overlap matrix was generated by treating the observed overlaps as random variables 
and sampling from a binomial distribution. Eigenvalue decomposition of these P 
values was used to estimate the number of effective tests that explain ≥99% of the 
variance in the 184 features. For the 184 noncoding cardiac gene regulatory features, 
this corresponded to 47 independent, effective tests and a Bonferroni P value of 
1.1 × 10−3 (0.05/47). These 184 features (that is, 47 effective features) were tested in 
the context of 6 gene sets and were tested on a genome-wide basis, so we corrected 
for these additional hypotheses. In order to account for testing 6 gene sets and 
testing genome-wide for 47 effective noncoding features, a final P value cut-off of 
1.3 × 10−4 = 0.05/(47 × 7) was used as a significance threshold for all comparisons.

HeartENN. HeartENN encompasses two neural network-based epigenomic effects 
models: one for human heart chromatin data and one for mouse heart chromatin 
data. Both models use the same convolutional neural network architecture but 
predict different genome-wide features (90 for human and 94 for mouse) based on 
the heart-specific chromatin profiles available for each organism. The models were 
trained with PyTorch using the Selene library70.

Training and evaluation data for the genome-wide features (for example, 
histone marks, transcription factors and DNase I accessibility) included data 
processed from the Cistrome, ENCODE and Roadmap Epigenomics projects, as 
well as a published dataset of 36 genome-wide p300/CBP and H3K27ac ChIP–seq 
profiles from ex vivo cardiac tissue samples in mouse and human across many 
conditions and developmental stages (Supplementary Table 7)11–28.
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The architecture of the HeartENN models is extended from the DeepSEA9,33 
architecture. In addition to HeartENN models that predict different regulatory 
features, the main changes are that: (1) the HeartENN architecture contains double 
the number of convolution layers, (2) the models predict the epigenomic features 
of the center 50-bp region and use the remaining 95 bp as the surrounding context 
sequence and (3) the number of kernels used in each convolution has been reduced 
(see Supplementary Note for details).

DNVs within RefSeq protein-coding exons were not scored with HeartENN 
(CHD probands, 792 DNVs; CHD-unaffected individuals, 1,749 DNVs); DNVs in 
noncoding exons were scored.

Accounting for varying HeartENN thresholds. We compared the number of DNVs 
in CHD probands to those in unaffected individuals with HeartENN scores above 
varying thresholds. In this context, optimal power for rejecting the null hypothesis 
that cases and controls have similar rates of relevant HeartENN scores is achieved 
with the variable threshold test71. This was performed by DNV case–control label 
swapping across all HeartENN cut-offs in 0.05 intervals. For every resample, we 
randomly assigned case–control status to DNVs with replacement and identified the 
most significant P value at any cut-off. When this null distribution was compared to 
the most extreme observed P value, a resampling P value was obtained.

Induced pluripotent stem cell-derived cardiomyocyte differentiation and 
ATAC–seq. Accessible chromatin regions during cardiomyocyte differentiation 
were identified by ATAC–seq analysis of isogenic human iPSC–CMs at several 
points during various states of differentiation.

Cells were differentiated according to previously described methods with 
small modifications72. One million iPSCs were plated in 6-well plates and were 
maintained in culture for three days. The differentiation process was performed 
when cells were ~95% confluent. Differentiation was performed using the GSK 
inhibitor (ChIR 18 μM) and Wnt inhibitor protocol (IWP4 5 μM)72. Selection was 
performed at days 12–15 using glucose-starved media. Cells were collected at days 
8, 17 and 30. Cell viability was required to be >80% for cells collected. Cells were 
observed under a microscope, and for days 17 and 30, cells were only collected if 
the whole well was beating (wells that only had beating clusters were discarded).

ATAC–seq was performed as described previously73,74. In brief, 50,000 cells 
were collected and lysed to isolate the nuclei. The nuclei were treated with Tn5 
transposase (Nextera DNA Sample Prep Kit, Illumina) and DNA was isolated. 
Fragmented DNA was then amplified using barcoded PCR primers and libraries 
were pooled. ATAC libraries were visualized on the tape station for characteristic 
nucleosome patterning before sequencing. Pooled libraries were then sequenced 
(Illumina Next-seq) to a depth of 100 million reads per sample. Reads were aligned 
to the hg19 reference genome using BWA-MEM and peaks were called using 
HOMERv4.9 (ref. 75). Functional analysis of ATAC–seq peaks was performed 
using ChIPseeker (v.1.14.1)76. De novo motif enrichment was performed using 
HOMERv4.9. Differential peaks were identified using HOMERv4.9. Libraries that 
contained an excess of mitochondrial DNA (>15% for iPSC–CMs) were removed. 
Each replicate was analyzed individually (n = 3–4 per time point) and compared to 
other replicates at the same time point, and data were also visualized in the IGV/
University of California Santa Cruz Genome Browser. Comparison of any two 
replicates resulted in approximately 85–95% peak overlap between replicates.

Enrichment for genes with burden of de novo variants in associated fetal cardiac 
enhancers. Cardiac enhancer elements were identified by H3K27ac peaks from 
human cardiac tissue77. Enhancer peaks were assigned to the closest RefSeq TSS and 
intersected with ATAC–seq peaks from day 8 or day 17 (Induced pluripotent stem 
cell-derived cardiomyocyte differentiation and ATAC–seq). The likelihood of multiple 
genes having DNV enrichment was assessed by randomly permuting the 7,378 total 
DNVs associated with the prioritized human fetal heart enhancers to case or control 
status with the same 2,218:5,160 ratio. The number of genes with enrichment P < 0.05 
in either cohort was calculated using a two-sided Fisher’s exact test.

Massively parallel reporter assays. The effect of CHD noncoding DNVs on 
enhancer activity was assessed by MPRAs40, using constructs with longer sequences 
so as to assess those residing in broad ATAC peaks identified in D17 iPSC–CM 
peaks. DNVs were selected for study using the following criteria: HeartENN score 
≥ 0.1 and with a prioritized human fetal heart enhancer (8 of 9 tested); HeartENN 
score ≥ 0.5 (11 of 22 tested); prioritized human fetal heart enhancer for which 
the associated gene was highly expressed in the developing heart (mouse E14.5 
expression rank >75th percentile) and highly constrained (pLi > 0.8) (9 of 24 
tested); and HeartENN score ≥ 0.1 and within a strong iPSC–CM day 8 or day 
17 ATAC–seq peak as well as an overlapping human fetal H3K27ac peak (11 of 
24 tested). Of note, most of the DNVs that met those criteria and that were not 
tested either contained a restriction site that would have prevented cloning of the 
full-length sequence or had repetitive sequences that were problematic for synthesis.

Gene fragments of 300–1,600 bp in length that harbored reference and variant 
alleles were synthesized by Twist Bioscience. Each fragment was separately PCR 
amplified and SfiI restriction enzyme sites were incorporated. After the fragments 
were cleaned with AmpureXP beads, equimolar amounts of pooled constructs 
were combined. To minimize occurrence of the restriction enzyme site in the 

enhancer sequences, SalI was substituted for XbaI when the inserts were cloned 
and to accommodate this change, the SalI site downstream of the poly(A) signal in 
the pMPRA1 plasmid (Addgene 49349) was mutated, using MfeI and BbsI sites in 
proximity. Modified MPRA plasmid sequences were verified using Sanger sequencing.

Gene fragments were cloned using the published MPRA protocol40. In short, 
the pooled enhancer fragments were digested with SfiI and ligated to the modified 
and digested pMPRA1 backbone with T4 DNA ligase. Plasmids were transformed 
into DH5α electrocompetent Escherichia coli cells and plasmid DNA was isolated 
using a Qiagen Maxiprep kit. Isolated plasmid DNA was digested with SalI and 
KpnI in the presence of shrimp alkaline phosphatase. Promoter and luciferase 
sequences isolated from pMPRAdonor2 (Addgene 49353) were then cloned into 
the intermediate plasmid. The final plasmid library was washed and concentrated 
with 70% ethanol, air dried and redissolved in sterile water.

iPSCs were cultured under standard condition using the culture medium 
mTesr. iPSCs were differentiated into CMs using the standard protocol78, 
and iPSC–CMs were selectively enriched using glucose starvation for 4 d. 
iPSC–CMs were replated into monolayers with 10× TrypLE cell dissociation 
reagent. After replating, healthy cells that were vigorously beating were used for 
library transfection using Lipofectamine 3000 according to the manufacturer’s 
instructions. Total RNA was harvested with Trizol 48 h after transfection, and 
genomic DNA was removed with DNase I. cDNAs were synthesized using 
the SuperScript III First Strand Synthesis kit with oligo(dT) according to the 
manufacturer’s instructions. MPRA barcodes were amplified from cDNAs and 
plasmids using the Tagseq primers.

Sequencing reads that contained the correct plasmid sequences were selected 
from raw reads. Barcode sequences were then matched, counted and normalized to 
the total number of barcode reads in the sequencing run.

Every variant in the ‘HeartENN ≥ 0.1 + FHP’ group was replicated using four 
independent plasmid libraries; variants in the remaining 3 groups were replicated 
using 3 independent plasmid libraries. Libraries 1, 2 and 4 were transfected on 
differentiation day 17, while the third was transfected on day 37. Each plasmid 
library experiment was repeated in four or five wells. Together, this resulted in 12–20 
expression measurements per mutant and wild-type variant with an extremely robust 
set of replicates incorporating different wells, plasmid libraries and time points.

RNA-binding-protein eCLIP binding data. Raw eCLIP binding data for the 160 
available RBPs were obtained from ENCODE15. Peaks were called from replicates 
using the CLIP Took Kit79 and were further processed80 into a narrower, higher 
confidence set of binding regions for each RBP. All peaks were then given 50-bp 
padding on both sides to expand the genomic coverage and increase the number of 
variants associated with each RBP.

Analysis of disruption of post-transcriptional regulation. Five groups of 
annotations were defined to investigate post-transcriptional regulation through 
disruption of RBP binding, as follows: (1) 3 variant types (SNV, indel and all); 
(2) 3 region types (TSS ± 20 kb region anchor, 3′UTR region anchor defined as 
(transcription end site (TES) – 5 kb and TES + 20 kb) and no region restriction); 
(3) 1 RBP category (union of eCLIP peaks from 160 RBPs, padded on both sides 
with 50 bp); (4) 2 gene sets (unconstrained or pLI > 0.5 constraint on nearest gene) 
and (5) histone mark annotations for actively transcribed regions in relevant proxy 
tissues, specifically H3K36me3 in 8 human embryonic stem cell lines—ES-I3 stem 
cells (NIH Roadmap Epigenomics numeric identifier E001), ES-WA7 stem cells 
(E002), H1 stem cells (E003), H9 stem cells (E008), HUES48 stem cells (E014), 
HUES6 stem cells (E015), HUES64 stem cells (E016) and ES-UCSF4 stem cells 
(E024)—plus human fetal heart tissue (E083).

Histone modification peaks were downloaded as broadPeak files, originally 
determined from Roadmap Epigenomics ChIP–seq data25. Raw broadPeaks were 
preprocessed as follows to include the majority of the area between the 5′ and 3′ 
UTRs for transcribed genes and to reduce noise in the identification of actively 
transcribed regions in proxy tissues: gaps under 1 kb between histone peaks within 
this region were filled in, which resulted in a slightly improved signal throughout 
for genes with many nearby peaks.

When one annotation from each group was picked, this resulted in 162 
possible combinations. These annotation categories were considered in the 
combination-wide association test and provided 105 independent tests, giving 
4.76 × 10−4 as the strict Bonferroni threshold. Two-sided Fisher’s exact tests were 
used to obtain ORs and associated P values for all test combinations. DNVs within 
RefSeq protein-coding exons were excluded.

Attributable risk calculation. The fraction of CHD cases that are attributable to 
noncoding DNVs was calculated by determining the excess fraction of DNVs in 
cases compared to those in controls (equation (1)); we then assumed at most one 
contributory DNV per proband to calculate the attributable fraction (equation (2)). 
This AR was calculated for HeartENN-damaging DNVs at successively stringent 
thresholds, DNVs within prioritized human fetal heart enhancers in multiple 
gene sets, DNVs shared between these results and DNVs implicated in the top 
RBP enrichment. The AR is cumulative across methods (after subtracting out the 
contribution of shared DNVs) and represents an estimate that should be refined in 
future studies.
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ARDNV ¼ DNVcases;candidate

DNVcases;total
� DNVcontrols;candidate

DNVcontrols;total

� �
ð1Þ

ARcases ¼
ARDNV ´DNVcases;total

ncases
ð2Þ

Statistics. All burden tests were calculated using two-sided Fisher’s exact tests with 
base values set to the total number of DNVs in cases or controls. Parental age is 
accounted for by using the total number of DNVs, instead of the number of trios, 
as a baseline. The significance threshold was P < 0.05, adjusted for multiple testing 
within each hypothesis space as specified in the preceding Methods.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Whole-genome sequencing data are deposited in the database of Genotypes  
and Phenotypes (dbGaP) under accession numbers phs001194.v2.p2 and 
phs001138.v2.p2.

Code availability
Documentation, links, and availability of source code and select supplementary 
data are detailed at https://github.com/frichter/wgs_chd_analysis. The DNV 
identification pipeline is available at https://github.com/ShenLab/igv-classifier 
and https://github.com/frichter/dnv_pipeline. The HeartENN algorithmic 
framework is available at https://github.com/FunctionLab/selene/archive/0.4.8.tar.
gz. HeartENN model weights and scripts for burden tests are available at https://
github.com/frichter/wgs_chd_analysis. All source code is distributed under the 
Massachusetts Institute of Technology license.

References
	60.	Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–

Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
	61.	McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework 

for analyzing next-generation DNA sequencing data. Genome Res. 20, 
1297–1303 (2010).

	62.	DePristo, M. A. et al. A framework for variation discovery and  
genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 
491–498 (2011).

	63.	Van der Auwera, G. et al. From FastQ data to high‐confidence variant calls: 
the genome analysis toolkit best practices pipeline. Curr. Protoc. 
Bioinformatics 43, 11.10.1–11.10.33 (2013).

	64.	Kim, B.-Y., Park, J. H., Jo, H.-Y., Koo, S. K. & Park, M.-H. Optimized 
detection of insertions/deletions (INDELs) in whole-exome sequencing data. 
PLoS One 12, e0182272 (2017).

	65.	Bailey, J. A., Yavor, A. M., Massa, H. F., Trask, B. J. & Eichler, E. E. Segmental 
duplications: organization and impact within the current human genome 
project assembly. Genome Res. 11, 1005–1017 (2001).

	66.	Derrien, T. et al. Fast computation and applications of genome mappability. 
PLoS One 7, e30377 (2012).

	67.	Li, H. Toward better understanding of artifacts in variant calling from 
high-coverage samples. Bioinformatics 30, 2843–2851 (2014).

	68.	Ostrander, B. E. P. et al. Whole-genome analysis for effective clinical 
diagnosis and gene discovery in early infantile epileptic encephalopathy.  
NPJ Genom. Med. 3, 22 (2018).

	69.	Blake, J. A. et al. Mouse Genome Database (MGD)-2017: community 
knowledge resource for the laboratory mouse. Nucleic Acids Res. 45, 
D723–D729 (2017).

	70.	Chen, K. M., Cofer, E. M., Zhou, J. & Troyanskaya, O. G. et al. Selene: a 
PyTorch-based deep learning library for sequence data. Nat. Methods 16, 
315–318 (2019).

	71.	Price, A. L. et al. Pooled association tests for rare variants in 
exon-resequencing studies. Am. J. Hum. Genet. 86, 832–838 (2010).

	72.	Lian, X. et al. Directed cardiomyocyte differentiation from human pluripotent 
stem cells by modulating Wnt/β-catenin signaling under fully defined 
conditions. Nat. Protoc. 8, 162–175 (2013).

	73.	Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC–seq: a 
method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. 
Biol. 109, 21.29.1–21.29.9 (2015).

	74.	Corces, M. R. et al. An improved ATAC–seq protocol reduces background 
and enables interrogation of frozen tissues. Nat. Methods 14, 959–962 (2017).

	75.	Heinz, S. et al. Simple combinations of lineage-determining transcription 
factors prime cis-regulatory elements required for macrophage and B cell 
identities. Mol. Cell 38, 576–589 (2010).

	76.	Yu, G., Wang, L.-G. & He, Q.-Y. ChIPseeker: an R/Bioconductor package for 
ChIP peak annotation, comparison and visualization. Bioinformatics 31, 
2382–2383 (2015).

	77.	Spurrell, C. H. et al. Genome-wide fetalization of enhancer architecture in 
heart disease. Preprint at bioRxiv https://doi.org/10.1101/591362 (2019).

	78.	Sharma, A., Toepfer, C. N., Schmid, M., Garfinkel, A. C. & Seidman, C. E. 
Differentiation and contractile analysis of GFP-sarcomere reporter hiPSC- 
cardiomyocytes. Curr. Protoc. Hum. Genet. 96, 21.12.1–21.12.12 (2018).

	79.	Shah, A., Qian, Y., Weyn-Vanhentenryck, S. M. & Zhang, C. CLIP Tool Kit 
(CTK): a flexible and robust pipeline to analyze CLIP sequencing data. 
Bioinformatics 33, 566–567 (2017).

	80.	Feng, H. et al. Modeling RNA-binding protein specificity in vivo by precisely 
registering protein-RNA crosslink sites. Mol. Cell 74, 1189–1204.e6 (2019).

Acknowledgements
We are enormously grateful to the patients and families who participated in this research. 
We thank the following for patient recruitment: A. Julian, M. MacNeal, Y. Mendez,  
T. Mendiz-Ramdeen and C. Mintz (Icahn School of Medicine at Mount Sinai); N. Cross 
(Yale School of Medicine); J. Ellashek and N. Tran (Children’s Hospital of Los Angeles);  
B. McDonough, J. Geva and M. Borensztein (Harvard Medical School); K. Flack,  
L. Panesar and N. Taylor (University College London); E. Taillie (University of Rochester 
School of Medicine and Dentistry); S. Edman, J. Garbarini, J. Tusi and S. Woyciechowski 
(Children’s Hospital of Philadelphia); D. Awad, C. Breton, K. Celia, C. Duarte, D. Etwaru, 
N. Fishman, E. Griffin, M. Kaspakoval, J. Kline, R. Korsin, A. Lanz, E. Marquez,  
D. Queen, A. Rodriguez, J. Rose, J. K. Sond, D. Warburton, A. Wilpers and R. Yee (Columbia 
Medical School); D. Gruber (Cohen Children’s Medical Center, Northwell Health). These 
data were generated by the PCGC, under the auspices of the Bench to Bassinet Program 
(https://benchtobassinet.com) of the NHLBI. The results analyzed and published here 
are based in part on data generated by Gabriella Miller Kids First Pediatric Research 
Program projects phs001138.v1.p2/phs001194.v1.p2, and were accessed from the Kids 
First Data Resource Portal (https://kidsfirstdrc.org/) and/or dbGaP (www.ncbi.nlm.nih.
gov/gap). This manuscript was prepared in collaboration with investigators of the PCGC 
and has been reviewed and/or approved by the PCGC. PCGC investigators are listed at 
https://benchtobassinet.com/?page_id=119. This work was supported in part through the 
computational resources and staff expertise provided by Scientific Computing at the Icahn 
School of Medicine at Mount Sinai. We are grateful to all of the families at the participating 
Simons Simplex Collection (SSC) sites, as well as the principal investigators (A. Beaudet,  
R. Bernier, J. Constantino, E. Cook, E. Fombonne, D. Geschwind, R. Goin-Kochel,  
E. Hanson, D. Grice, A. Klin, D. Ledbetter, C. Lord, C. Martin, D. Martin, R. Maxim, 
J. Miles, O. Ousley, K. Pelphrey, B. Peterson, J. Piggot, C. Saulnier, M. State, W. Stone, 
J. Sutcliffe, C. Walsh, Z. Warren and E. Wijsman). We appreciate the access obtained 
to phenotypic and/or genetic data on SFARI Base. Approved researchers can obtain 
the SSC population dataset described in this study (https://www.sfari.org/resource/
simons-simplex-collection) by applying at https://base.sfari.org. This work was supported 
by the Mount Sinai Medical Scientist Training Program (5T32GM007280 to F.R.), National 
Institute of Dental and Craniofacial Research Interdisciplinary Training in Systems and 
Developmental Biology and Birth Defects (T32HD075735 to F.R.), Harvard Medical School 
Epigenetic and Gene Dynamics Award (S.U.M. and C.E.S.), American Heart Association 
Post-Doctoral Fellowship (S.U.M.), and Howard Hughes Medical Institute (C.E.S.). 
Research conducted at the E.O. Lawrence Berkeley National Laboratory was supported 
by National Institutes of Health (NIH) grants (UM1HL098166 and R24HL123879) and 
performed under Department of Energy Contract DE-AC02-05CH11231, University of 
California. O.T. is a CIFAR fellow and this work was partially supported by NIH grant 
R01GM071966. The PCGC program is funded by the NHLBI, NIH, US Department 
of Health and Human Services through grants UM1HL128711, UM1HL098162, 
UM1HL098147, UM1HL098123, UM1HL128761 and U01HL131003. The PCGC Kids 
First study includes data sequenced by the Broad Institute (U24 HD090743-01).

Author contributions
F.R., S.U.M., S.W.K., A.K., L.K.W., K.M.C., J.R.K., O.G.T., D.E.D., Y.S., J.G.S., C.E.S. and 
B.D.G. conceived and designed the experiments/analyses. J.R.K., J.W.N., A.G., E.G., M.B., 
R.K., G.A.P., D.B., W.K.C., D.S., M.T.-F., J.G.S., C.E.S. and B.D.G. contributed to cohort 
ascertainment, phenotypic characterization and recruitment. F.R., S.U.M., A.K., H.Q., 
N.P., S.R.D., M.P., J.H., J.M.G., K.B.M., M.V., A.F., G.M., W.K.C., Y.S., J.G.S., C.E.S. and 
B.D.G. contributed to whole-genome sequencing production, validation and analysis. F.R., 
S.U.M., A.K., K.M.C., H.Q., E.E.S., O.G.T., Y.S., J.G.S., C.E.S. and B.D.G. contributed to 
statistical analyses. F.R., K.M.C., J.Z., O.G.T. and B.D.G. developed the HeartENN model. 
S.U.M., S.W.K., L.K.W., D.E.D., J.G.S. and C.E.S. generated and analyzed fetal heart and 
iPSC data. F.R., S.U.M., S.W.K., A.K., L.K.W., K.M.C., Y.S., J.G.S., C.E.S. and B.D.G. wrote 
and reviewed the manuscript. All authors read and approved the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41588-020-0652-z.

Supplementary information is available for this paper at https://doi.org/10.1038/
s41588-020-0652-z.

Correspondence and requests for materials should be addressed to B.D.G.

Reprints and permissions information is available at www.nature.com/reprints.

Nature Genetics | www.nature.com/naturegenetics

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001194.v2.p2
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001138.v2.p2
https://github.com/frichter/wgs_chd_analysis
https://github.com/ShenLab/igv-classifier
https://github.com/frichter/dnv_pipeline
https://github.com/FunctionLab/selene/archive/0.4.8.tar.gz
https://github.com/FunctionLab/selene/archive/0.4.8.tar.gz
https://github.com/frichter/wgs_chd_analysis
https://github.com/frichter/wgs_chd_analysis
https://doi.org/10.1101/591362
https://benchtobassinet.com
https://kidsfirstdrc.org/
http://www.ncbi.nlm.nih.gov/gap
http://www.ncbi.nlm.nih.gov/gap
https://benchtobassinet.com/?page_id=119
https://www.sfari.org/resource/simons-simplex-collection
https://www.sfari.org/resource/simons-simplex-collection
https://base.sfari.org
https://doi.org/10.1038/s41588-020-0652-z
https://doi.org/10.1038/s41588-020-0652-z
https://doi.org/10.1038/s41588-020-0652-z
http://www.nature.com/reprints
http://www.nature.com/naturegenetics


ArticlesNature Genetics

Extended Data Fig. 1 | Other pipelines identified 94% of DNVs in control trios. Overlaps with DNVs identified in 1,470 control trios with two other 
pipelines9,10. Of note, a third analysis of these trios did not include de novo calls42. For consistency with other pipelines, only SNVs were included and 
variants in LCRs, blacklists, segmental duplications, and repeats were excluded. Together, 94% of de novo SNVs were called by at least one other pipeline.
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Extended Data Fig. 2 | Correlation between parental age at proband birth and DNVs/trio. Multiple linear regression (βpaternal_agex + βmaternal_agex + βintercept + ε)  
was fitted on 763 CHD and 1,611 unaffected individuals to calculate the associations between paternal and maternal age for SNVs, indels, and combined. 
Regression coefficients and P-values are shown, uncorrected for multiple hypotheses. Sequencing metric comparisons between the centers, colored by 
cases (n = 763) and controls (n = 1,611), found moderate bias in DNV quantity, so the background statistical parameter throughout the manuscript is total 
number of DNVs. Box plots show medians and interquartile ranges.
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Extended Data Fig. 3 | De novo variant (DNV) CHD-unaffected burden. The number of DNVs in 184 noncoding annotations (points) genome-wide and 
within 10 kb of TSSs for 6 gene sets (facets) was counted in CHD (n = 749) and Simons unaffected (n = 1,611) individuals. The P value threshold (1.5 x 10-4, 
horizontal blue line) is 0.05 divided by the product of the number of effective annotations (n = 47) and number of gene sets (n = 7). The P value (y-axis) 
was calculated with a two-sided Fisher’s exact test, the odds ratio (x-axis) was DNVsannotation,CHD/DNVstotal,CHD vs. DNVsannotation,unaffected/DNVstotal, unaffected. No 
annotations surpassed the P value threshold. CHD, congenital heart disease; HHE, high heart expression.
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Extended Data Fig. 4 | HeartENN performance was comparable to DeepSEA. HearENN ROC AUC mean = 0.93 and AUPRC mean = 0.34. ROC AUC, 
receiver operator characteristics area under the curve; AUPRC, area under the precision recall curve.
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Extended Data Fig. 5 | Determining an absolute functional difference score range. a, Comparison of HGMD disease mutations (blue, n = 1,564) 
and polymorphism (gray, n = 642) DeepSEA absolute functional difference scores at varying functional cut-offs illustrates a similar distribution and 
functionally impactful range ≥0.1 (arrow) for disease mutations. No statistical significance testing was performed. b, The similarity of null distributions for 
DeepSEA (gray, downsampled to 184 features) and HeartENN (heart) HGMD polymorphism scores suggested that the DeepSEA functional score range 
was also applicable to HeartENN (gray and red n = 642). Scores of 0 set off to left (as 10-4).
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Extended Data Fig. 6 | Support for HeartENN ≥ 0.1 functional ranking. For all DNVs (n = 170,171), overlap between HeartENN ≥0.1 (n = 6,415) and other 
noncoding scores was assessed with a two-sided Fisher’s exact test (left panel). Case–control burden for these other noncoding scores (right panel) was 
statistically significant for CADD ≥15 (PBonferroni = 0.019) with a two-sided Fisher’s exact test (cases n = 56,164 and controls n = 114,065). For both panels, 
unadjusted P-values are tabulated, and red indicates a Benjamini-Hochberg-adjusted P value false discovery rate (FDR) < 0.05.
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Extended Data Fig. 7 | Relationship between sequence length inserted into the pMRPA1 plasmid and the transcript reads/plasmid copies in MPRAs. 
The length of the sequences inserted into the pMPRA1 plasmid (x-axis) ranged from 300 to 1,600 bp. After transfection of four libraries (color coded as 
per key) into the iPSC–CMs, the resulting ratios of transcript reads (mRNA) per plasmid copies (DNA) are graphed on the y-axis, showing no systematic 
relationship between insert length and transcriptional level.
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Extended Data Fig. 8 | DNVs with a trend towards decreased expression by MPRA assay. Box plots for two DNVs for which two MPRA replicates were 
significantly different but overall statistical significance across all replicates was not attained. Boxplots show the median fold change (FC), first and 
third quartiles (lower and upper hinges), and range of values (whiskers and outlying points). Statistical significance was assessed with two-sided t-test 
Benjamini-Hochberg-adjusted P-values. Each boxplot has at least 3 independent experiments with 4 technical replicates each.
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Extended Data Fig. 9 | Fraction of DNVs in each of the canonical variant classes. The fraction was calculated separately within CHD and unaffected 
subjects for each of the three methods (including overlaps) and the total number of variants in each group (right table).
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Extended Data Fig. 10 | DNV enrichment in phenotype subgroups. a, Enrichment of DNVs with predicted functional impacts (score ≥0.1) for HeartENN 
(left) and DeepSEA (right) within phenotype subgroups. b, Enrichment of de novo SNVs with H3K36me3 marks implicated in RNA-binding protein 
disruption in different subgroups for the most significant (left) and highest effect size (right) hits. Both a and b were performed with a two-sided Fisher’s 
exact test (unadjusted P-values and 95% C.I.s shown) comparing the fraction of DNVs in each subgroup (HeartENN ≥ 0.1, DeepSEA ≥ 0.1, etc.) to the 
same control cohort. For HeartENN, there were n = 4,177 control DNVs with HeartENN ≥ 0.1 and n = 109,888 control DNVs with HeartENN < 0.1. NDD, 
neurodevelopmental disorder; ECA, extracardiac anomaly.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection REDCap and HeartsMart (https://pcgc.research.cchmc.org/) for CHD patient recruitment. Whole genome sequencing was performed on 
Illumina Hi-Seq X Ten machines.

Data analysis Software used in data analysis included GATK (https://www.broadinstitute.org/gatk/); FreeBayes (https://github.com/ekg/freebayes); 
DeepSEA (http://deepsea.princeton.edu/); R version 3.4.1; Python versions 2.7 and 3.5. Documentation, links, and availability of source 
code and select supplementary data is detailed at https://github.com/frichter/wgs_chd_analysis. DNV identification is available at 
https://github.com/ShenLab/igv-classifier and https://github.com/frichter/dnv_pipeline. The HeartENN algorithmic framework is 
available at https://github.com/FunctionLab/selene/archive/0.4.8.tar.gz. HeartENN model weights and scripts for burden tests are 
available at https://github.com/frichter/wgs_chd_analysis. All source code is distributed under the MIT license.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Whole genome sequencing data were deposited in the database of Genotypes and Phenotypes (dbGaP) under accession numbers phs001194.v2.p2 and 
phs001138.v2.p2.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No calculation for sample size was performed. Cohort size was determined using samples that had undergone whole genome sequencing. 
Sample sizes were deemed sufficient based on effect size, statistical significance, and robustness of results across multiple computational and 
laboratory methods.

Data exclusions Exclusion criteria were pre-established. Individuals with aneuploidies, structural variants, or likely causal variants in coding regions known to 
be associated with congenital heart disease were excluded. Controls with possible CHD were also excluded.

Replication No replication

Randomization CHD: Presence of structural congenital heart disease 
Control: Unaffected sibling or parent of proband with autism; ascertained for absence of autism

Blinding No blinding. Investigators were aware of case-control status, which was required to perform analyses. HeartENN was developed in a blinded 
fashion (i.e., the investigators did not use patient mutation data for model development).

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) PGP1 cell line was a gift from Church lab. GFP tagged TTN line (doi: 10.1002/cphg.53) was generated from PGP1 in the lab.

Authentication Pluripotency of the cells were confirmed by their ability to differentiate into beating cardiomyocytes.

Mycoplasma contamination All cell lines tested negative for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used.

Human research participants
Policy information about studies involving human research participants

Population characteristics 763 patients and their parents were included in the study. This cohort comprised patients with whole genome sequencing data 
and congenital heart disease, including atrial septal defects, conotruncal abnormalities, left-sided obstructive lesions, and 
heterotaxy. There were no exclusion criteria based on age or sex. Phenotypic and genomic data from 1611 unaffected subjects 
and their parents, not recruited through this study, were obtained through the Simons Foundation.

Recruitment Patients with structural CHD and their parents were enrolled in the PCGC's Congenital Heart Disease Network Study (CHD 
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Recruitment GENES: ClinicalTrials.gov identifier NCT0119618). Selection bias could occur with over-sampling familial CHD, but this risk of bias 

was minimized through recruitment at >7 institutions in multiple states/countries.

Ethics oversight The protocols were approved by the Institutional Review Boards of Boston’s Children’s Hospital, Brigham and Women’s Hospital, 
Children’s Hospital of Los Angeles, Children’s Hospital of Philadelphia, Columbia University Medical Center, Great Ormond Street 
Hospital, Icahn School of Medicine at Mount Sinai, Rochester School of Medicine and Dentistry, Steven and Alexandra Cohen 
Children’s Medical Center of New York, and Yale School of Medicine. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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