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MVP predicts the pathogenicity of missense
variants by deep learning
Hongjian Qi1,2,9, Haicang Zhang1,9, Yige Zhao 1,9, Chen Chen1,3,9, John J. Long 2, Wendy K. Chung4,

Yongtao Guan5,8 & Yufeng Shen 1,6,7✉

Accurate pathogenicity prediction of missense variants is critically important in genetic

studies and clinical diagnosis. Previously published prediction methods have facilitated the

interpretation of missense variants but have limited performance. Here, we describe MVP

(Missense Variant Pathogenicity prediction), a new prediction method that uses deep resi-

dual network to leverage large training data sets and many correlated predictors. We train

the model separately in genes that are intolerant of loss of function variants and the ones that

are tolerant in order to take account of potentially different genetic effect size and mode of

action. We compile cancer mutation hotspots and de novo variants from developmental

disorders for benchmarking. Overall, MVP achieves better performance in prioritizing

pathogenic missense variants than previous methods, especially in genes tolerant of loss of

function variants. Finally, using MVP, we estimate that de novo coding variants contribute to

7.8% of isolated congenital heart disease, nearly doubling previous estimates.
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M issense variants are the most common type of coding
genetic variants and are a major class of genetic risk
across a broad range of common and rare diseases.

Previous studies have estimated that there is a substantial con-
tribution from de novo missense mutations to structural birth
defects1–3 and neurodevelopmental disorders4–6. However, only a
small fraction of missense de novo mutations are pathogenic4 that
will cause disease. As a result, the statistical power of detecting
individual risk genes based on missense variants or mutations is
limited7. In clinical genetic testing, many of missense variants in
well-established risk genes are classified as variants of uncertain
significance, unless they are highly recurrent in patients. Pre-
viously published in silico prediction methods have facilitated the
interpretation of missense variants, such as CADD8, VEST39,
MetaSVM10, M-CAP11, REVEL12, PrimateAI13, and UNEE-
CON14. However, based on recent de novo mutation data, they all
have limited performance with low positive predictive value
(Supplementary Data 1), especially in non-constrained genes
(defined as ExAC15 pLI < 0.5).

In this work, we hypothesize that missense variant patho-
genicity prediction can be improved in a few dimensions. First,
conventional machine learning approaches have limited capacity
to leverage large amounts of training data compared to recently
developed deep learning methods16. Second, databases of
pathogenic variants curated from the literature are known to have
a substantial frequency of false positives17, which are likely caused
by common issues across databases and therefore introduce
inflation of benchmark performance. Developing new benchmark
data and methods can help to assess and improve real perfor-
mance. Finally, previous methods do not consider gene dosage
sensitivity15,18, which can modulate the pathogenicity of dele-
terious missense variants. Generally, missense variants can be
classified into three categories based on their impact on protein
function (“mode of action”): (1) gain of function (also called
hypermorph or neomorph); (2) dominant negative (also called
antimorph); (3) hypomorph (partial or complete loss of function,
also called amorph)19,20. A hypomorphic variant with hetero-
zygous genotype can only be pathogenic in dosage sensitive
genes6, whereas the pathogenicity of a gain of function or
dominant negative variant with heterozygous genotype is not
limited by gene dosage sensitivity. With recently published
metrics of mutation intolerance, which is strongly associated with
dosage sensitivity15, it is now feasible to consider gene dosage
sensitivity in predicting pathogenicity. Based on these ideas, we
developed a new method, MVP, to improve missense variant
pathogenicity prediction. We evaluate MVP on the data of cancer
mutation hotspots and de novo variants from developmental
disorders. Overall, MVP achieves better performance in prior-
itizing pathogenic missense variants than previous methods,
especially in genes tolerant of loss of function variants.

Results
Model structure and predictors. MVP uses many correlated
predictors, broadly grouped into two categories (Supplementary
Data 2): (a) “raw” features computed at different scales, per base
pair (e.g., amino acid constraint score and conservation), per local
context (e.g., protein structure and modification), as well as per
gene (e.g., gene mutation intolerance, sub-genic regional deple-
tion of missense variants21); (b) deleteriousness scores from
selected previous methods. To account for the impact of gene
dosage sensitivity on pathogenicity of heterozygous missense
variants, we trained our models in constrained genes (defined as
ExAC15 probability of being loss-of-function (LoF) intolerant
(pLI) ≥ 0.5) and non-constrained genes (ExAC pLI < 0.5) sepa-
rately. We included 38 features for the constrained gene model,

and 21 features for the non-constrained gene model. We removed
most of published prediction methods features due to limited
prediction accuracy (Supplementary Data 1, 2). We also excluded
most of conservation features in the non-constrained gene model,
as pathogenic variants in non-constrained genes are less con-
served (Supplementary Fig. 1).

MVP uses a deep residual neural network (ResNet)22 model.
ResNet was designed for computer vision22 and was successfully
applied in structural biology23 and genomics24. The convolutional
layers in ResNet are capable of extracting hierarchical features or
nonlinear spatial local patterns from images or sequence data. To
take advantage of this, we ordered the predictors based on their
correlation, as highly correlated predictors are clustered together
(Supplementary Fig. 2). There are two layers of residual blocks,
consisting of convolutional filters and activation layers, and two
fully connected layers with sigmoid output (Supplementary
Fig. 3). For each missense variant, we defined MVP score by
the rank percentile of the ResNet’s raw sigmoid output relative to
all 76 million possible missense variants.

In this work, we focus on the rare variants with large effect. We
used a minor allele frequency (MAF) threshold of 10−4 (based on
gnomAD25) to filter variants in both training and testing
data sets.

Model training. We obtained large curated data sets of patho-
genic variants from HGMD26 and UniProt10,27 as positives and
random rare missense variants from population data as negatives
for training (Supplementary Data 3). The training process takes
around 10 min on 1.6 GHz GPU with 2560 cores and 8 GB
memory. Using 6-fold cross-validation on the training set
(Supplementary Fig. 4), MVP achieved mean area under
the curve (AUC) of 0.99 in constrained genes and 0.97 in non-
constrained genes.

Performance evaluation using curated mutation data sets. To
evaluate predictive performance of the MVP and compare it with
other methods, we obtained an independent curated testing
data set from VariBench10,28 (Supplementary Fig. 5). MVP out-
performed all other methods with an AUC of 0.96 and 0.92 in
constrained and non-constrained genes, respectively. A few
recently published methods (REVEL, M-CAP, VEST3, and
MetaSVM) were among the second-best predictors and achieved
AUC around 0.9.

Similar to HGMD and Uniprot data used in training,
VariBench data are curated from literature. False positives caused
by similar factors by this approach across training and VariBench
data sets could inflate the performance in testing. To address this
issue, we compiled cancer somatic mutation data for further
evaluation, including missense mutations located in inferred
hotspots based on statistical evidence from a recent study29 as
positives, and randomly selected variants from DiscovEHR30

database as negatives. In this dat aset, the performance of all
methods decreased, but MVP still achieved the best performance
with AUC of 0.91 (maximum p= 3.2e−8) and 0.85 (maximum
p= 6.6e−4) in constrained and non-constrained genes, respec-
tively (Fig. 1). We observed that methods using HGMD or
UniProt in training generally have greater performance drop than
others (Supplementary Data 1, Supplementary Fig. 6, Supple-
mentary Note 1).

To investigate the contribution of features to MVP predictions,
we performed cross-one-group-out experiments and used the
differences in AUC as an estimation of feature contribution
(Fig. 2). We found that in constrained genes, conservation scores
and published deleteriousness predictors have relatively large
contribution, whereas in non-constrained genes, protein structure
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and modification features and published predictors are the most
important.

Evaluating pathogenic de novo missense variants in CHD and
ASD. To test the utility in real genetic studies, we obtained
germline de novo missense variants (DNMs) from 2645 cases in a
congenital heart disease (CHD) study2 (Supplementary Data 4),
3953 cases in autism spectrum disorder (ASD) studies2,4,5 (Sup-
plementary Data 5), and DNMs from 1911 controls (unaffected
siblings) in Simons Simplex Collection2,4,5 (Supplementary
Data 6). Since genes with cancer mutation hotspots are relatively
well studied in both constrained and non-constrained gene sets,
assessment using de novo mutations can provide additional
insight with less bias (Supplementary Data 7). Because the true
pathogenicity of most of the de novo mutations is unknown, we
cannot directly evaluate the performance of prediction methods.
To address this issue, we first compared the distribution of pre-
dicted scores of DNMs in cases with the ones in controls (Fig. 3).

Using Mann–Whitney U test, MVP-predicted scores of variants
in cases and controls are significantly different (p= 1e−5 and
2.7e−4 for CHD vs. controls and ASD vs. controls, respectively),
and the difference is greater than predictions from other methods.

We then calculated the enrichment rate of predicted patho-
genic DNMs by a method with a certain threshold in the cases
compared to the controls, and then estimated precision and the
number of true risk variants (Methods), which is a proxy of recall
since the total number of true positives in all cases is a (unknown)
constant independent of methods. We compared the performance
of MVP to other methods by estimated precision and recall-proxy
(Fig. 4). Based on the optimal thresholds of MVP in cancer
hotspot ROC curves, we used a score of 0.7 in constrained genes
and 0.75 in non-constrained genes to define pathogenic DNMs
(Supplementary Fig. 7). In constrained genes, we observed an
enrichment of 2.2 in CHD and an enrichment of 1.9 in ASD
(Supplementary Data 8, 9), achieving estimated precision of 0.55
and 0.47 (Fig. 4a and 4d), respectively. This indicates that about

Fig. 1 Comparison of receiver operating characteristic (ROC) curves of existing prediction scores and MVP scores using cancer somatic mutation
hotspot data. a Constrained genes (ExAC pLI≥ 0.5): evaluation of 698 cancer mutations located in hotspots from 150 genes, and 6989 randomly selected
mutations from DiscovEHR database excluding mutations used in training. b Non-constrained genes (ExAC pLI < 0.5): evaluation of 177 cancer mutations
located in hotspots from 55 genes and 1782 randomly selected mutations from DiscovEHR database excluding mutations used in training. The performance
of each method is evaluated by the ROC curve and area under the curve (AUC) indicated in parenthesis. Higher AUC score indicates better performance.

Fig. 2 Measuring the contribution of features to MVP prediction performance in cancer mutation hotspots data. Performance contribution is measured
by AUC reduction (ΔAUC) from excluding a group of features. Since features within a group is often highly correlated, we did measure the contribution of
an entire group instead of individual features in the group. a Constrained genes (b) Non-constrained genes. We subsampled negatives from DiscovEHR
database and calculated ΔAUC 15 times and estimated the error bar. The box bounds the interquartile range (IQR) divided by the median, and Tukey-style
whiskers extend to a maximum of 1.5× IQR beyond the box.
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50% of the MVP-predicted pathogenic DNMs contribute to the
diseases. In non-constrained genes, we observed an enrichment of
1.5 in CHD and 1.4 in ASD (Supplementary Data 8, 9),
respectively, and 0.33 and 0.29 in estimated precision (Fig. 4b
and 4e). In all genes combined, MVP achieved an estimated
precision of 40% for CHD and 34% for ASD (Fig. 4c and 4f). The
next best methods reached 26% (M-CAP11) and 21% (Prima-
teAI13) given the same recall-proxy for CHD and ASD,
respectively (Supplementary Data 8, 9). Furthermore, the
estimated precision of MVP with DNMs at optimal threshold is
much closer to the expected precision based on ROC of cancer
hotspots data than the value from VariBench data (Supplemen-
tary Fig. 8 and Supplementary Note 1), supporting that there is
less performance inflation in testing using cancer data.

We used ResNet in MVP, which is based on Convolutional
Neural Network while more efficient in training. In order to
assess its importance, we trained a Random Forest model, which
is the core of methods such as REVEL12, with the same training
sets and features. We also trained a Fully-connected Neural
Network as the baseline performance of neural network methods.
ResNet slightly outperformed Random Forest and has the same
performance with Fully-connected Neural Network with cancer
somatic mutation data (Supplementary Fig. 9), and substantially
outperformed both with de novo mutations in CHD and autism
(Supplementary Figs. 10, 11).

Previous studies have estimated that deleterious de novo
coding mutations, including loss of function variants and
damaging missense variants, have a small contribution to isolated
CHD2. Here, we used MVP to revisit this question. With the
definition of damaging DNMs in Jin et al. 20172 (based on
MetaSVM10), the estimated contribution of deleterious de novo
coding mutations to isolated CHD is about 4.0%. With MVP
score of 0.75, the estimation is 7.8% (95% CI= [5.9%, 9.6%]),
nearly doubling the previous estimate (Supplementary Data 10,
11). We performed pathway enrichment analysis of genes with
MVP-predicted pathogenic de novo missense mutations in CHD

cases using Enrichr31. In isolated cases, the genes with such
variants are significantly enriched (FDR < 0.01) for cardiac
conduction (FDR= 0.006, odds ratio= 8.7) and muscle contrac-
tion (FDR= 0.006, odds ratio= 6.8). In syndromic CHD cases
who have additional congenital anomalies or neurodevelopmental
disorders, the genes with such variants are significantly enriched
in Notch, Robo, or MAPK signaling pathways (Supplementary
Fig. 12, Supplementary Data 12) that have been implicated with
other developmental disorders.

Discussion
We developed a new method, MVP, to predict pathogenicity of
missense variants. MVP is based on residual neural networks, a
supervised deep learning approach, and was trained using a large
number of curated pathogenic variants from clinical databases,
separately in constrained genes and non-constrained genes. Using
cancer mutation hotspots and de novo mutations from CHD and
ASD studies, we showed that MVP achieved overall better per-
formance than published methods, especially in non-
constrained genes.

Two factors may contribute to the improved prediction per-
formance. First, deep neural network models have a larger
learning capacity to leverage large training data set than con-
ventional machine learning methods that were used in previous
publications. The residual blocks in ResNet largely alleviate the
problem of vanishing gradient when increasing the number of
layers, which further enables efficient training on deeper net-
works22. Using the same features in training data set, we showed
that ResNet achieved better performance than two conventional
machine learning methods, Random Forest and Fully-connected
Neural Network. Second, we trained the model separately in
constrained and non-constrained genes. This is motivated by the
idea that the mode of action of pathogenic variants can be dif-
ferent in constrained and non-constrained genes. Constrained
genes are likely to be dosage sensitive, therefore, deleterious

Fig. 3 Distribution of predicted scores of de novo missense variants by MVP and other methods. For each method, we normalized all predictions by rank
percentile, and used two-sided Mann–Whitney U test to assess the statistical significance of the difference between cases and controls. CHD: congenital
heart disease; ASD: autism spectrum disorder; controls: unaffected siblings from the ASD study. Number of de novo missense variants compared: CHD:
1486; ASD: 2050; controls: 838.
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missense variants of any mode of action with heterozygous
genotypes can be pathogenic. In contrast, non-constrained genes
are unlikely to be dosage sensitive, as a result, hypermorphic
variants with heterozygous genotype are unlikely to be patho-
genic. Instead, gain of function or dominant negative variants are
the main type of pathogenic variants in these genes. By training
the model in these two groups of genes separately, we enhance the
ability of the model to use features that are informative with gain
of function or dominant negative in non-constrained genes. In
addition, we selected a smaller number of features in the model
for non-constrained genes. We excluded most of the conservation
scores and published predictors, based on the observation that
known pathogenic variants in non-constrained genes are less
conserved across species (Supplementary Fig. 1) and that pub-
lished methods have poor performance in prioritization of de
novo variants in these genes (Supplementary Data 1). We kept all
the features related to protein structure and post-translational
modification. The change of the model for non-constrained genes
is supported by sensitivity analysis using cancer mutation hotspot
data (Fig. 2). When protein structure related features are further
excluded, the model has the biggest drop in AUC in non-
constrained genes. In contrast, excluding conservation scores
does not lead to reduced AUC.

In a recent genetic study of CHD1,2, de novo mutations were
estimated to contribute to 10–30% of syndromic cases who had
additional congenital anomalies or neurodevelopmental disorders

(NDD), but only about 4% of isolated cases who did not have
additional anomalies or NDD. Isolated CHD are the most com-
mon form of the disease32. We reanalyzed the de novo missense
variants using MVP. We estimated that predicted-pathogenic de
novo mutations actually contribute to about 7.8% of isolated
cases, doubling previous estimate. The revised estimate suggests a
greater utility of discovery or prioritization of new candidate risk
genes by de novo mutations in isolated CHD. Pathway analysis
shows predicted pathogenic missense variants in isolated CHD
cases are enriched in cardiac conduction and muscle contraction,
whereas the ones in syndromic CHD cases are enriched in Notch,
Robo, or MAPK signaling. The different organ-specificity of these
pathways is consistent with phenotypes. Nevertheless, the genetic
cause of CHD is very heterogeneous1,2, similar to autism4,5,33–35.
With a few thousand cases, very few true risk genes have multiple
observed deleterious de novo mutations in the data. As a result,
there is a substantial uncertainty of the estimated contribution of
de novo mutations. Future studies with larger sample size will
enable more precise estimation of the contribution of de novo
mutations and identification of new candidate risk genes.

We note that MPC has better precision than MVP with con-
strained genes with ASD data (Fig. 4d), while MVP has much
better performance in constrained genes with CHD data (Fig. 4a),
and much better performance in non-constrained genes with
both ASD data (Fig. 4e) and CHD data (Fig. 4b). Based on known
risk genes for ASD36 and CHD2, autism risk genes are under

Fig. 4 Comparison of MVP and previously published methods using de novo missense mutations from CHD and ASD studies by precision-recall-proxy
curves. Numbers on each point indicate rank percentile thresholds, star points indicate thresholds recommended by publications. The positions of “All Mis”
points are estimated from all missense variants in the gene set without using any pathogenicity prediction method. The point size is proportional to
–log (p-value). P-value is calculated by two-sided binomial test, only points with p value less than 0.05 are shown. a–c Performance in CHD DNMs in
constrained genes, non-constrained genes, and all genes, respectively. d–f Performance in ASD DNMs in constrained genes, non-constrained genes, and all
genes, respectively.
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stronger negative selection of loss of function variants (“s_het”37)
than CHD risk genes. High score of sub-genic regional constraint,
a key metric used in MPC, is predominantly located in genes
under very strong negative selection. This could explain the dif-
ference of autism vs. CHD mutations among constrained genes.
Supplementary Fig. 13 shows that variants in constrained genes
significantly have higher MPC scores than those in non-
constrained genes, either for pathogenic variants or benign var-
iants in the training set. MPC has limited performance among
non-constrained genes, the results of all threshold in MPC in
non-constrained genes is not statistically significant in ASD cases,
and MPC was not shown in the panel on non-constrained genes
(Fig. 4d and Fig. 4e). We also noted that MPC achieves better
sensitivity at the published recommended threshold compared to
MVP with all genes with CHD data (Fig. 4c). There is a trade-off
between sensitivity and specificity. The recommended threshold
of MPC achieves slightly better sensitivity compared to recom-
mended threshold of MVP, however, the specificity of MVP is
almost doubling MPC. With the same sensitivity, MVP generally
outperformed other methods.

Pathogenic variants may have a range of effect size and
penetrance. In this work, we focused on rare variants with large
effect size. Our model is consistent with a common definition of
pathogenicity38, that is, pathogenic variants mechanistically
contribute to disease, but not necessarily with full penetrance.
Specifically, we included prediction features based on protein
structure and protein modification, which provide biophysical
and biochemical basis for mechanistical contribution to the dis-
ease, and evolution conservation, which is usually a consequence
of direct contribution to diseases. In addition, the positives in
model training were from HGMD and UniProt, expert-curated
databases with large-number of likely pathogenic and rare var-
iants reported in previous publications. We do not include
disease-associated common variants from genome-wide associa-
tion studies (GWAS) in training.

A limitation of MVP is the unknown but potentially high false
positive rate of curated pathogenetic variants used in training.
The largest databases, such as HGMD and Varibench, were
curated from a broad range of publications with uneven quality.
As a result, independently curated databases suffer from similar
types of errors. This issue is highlighted by the performance drop
in testing on cancer somatic mutation hotspots data comparing to
VariBench. Systematic efforts such as ClinVar39 will eventually
produce better and larger training data to improve prediction
performance.

Finally, we note that a single pathogenic score cannot capture
the complexity of the mechanisms of pathogenicity. Many genes
may have different modes of action in different diseases. One
example is CTNNB1 (beta catenin). It is an oncogene in cancer
through gain-of-function mutations40, and a risk gene in struc-
tural birth defects and neurodevelopmental disorders through
loss of function germline mutations41. Most prediction tools,
including MVP, do not distinguish pathogenic missense variants
with gain of function from the ones with loss of function.
Explicitly predicting gain or loss of function, as what a recent
study focused on channels did42, would improve the utility of
prediction methods.

Methods
Training data sets. We compiled 22,390 missense mutations from Human Gene
Mutation Database Pro version 2013 (HGMD)26 database under the disease
mutation (DM) category, 12,875 deleterious variants from UniProt10,27, and 4424
pathogenic variants from ClinVar database39 as true positive (TP). In total, there
are 32,074 unique positive training variants. The negative training sets include 5190
neutral variants from Uniprot10,27, randomly selected 42,415 rare variants from
DiscovEHR database30, and 39,593 observed human-derived variants8. In total,
there are 86,620 unique negative training variants (Supplementary Data 3).

Testing data sets. We have three categories of testing data sets (Supplementary
Data 3). The three categories are: (a) Benchmark data sets from VariBench10,28 as
positives and randomly selected rare variants from DiscovEHR database30 as
negatives; (b) cancer somatic missense mutations located in hotspots from recent
study29 as positives and randomly selected rare variants from DiscovEHR data-
base30 as negatives; (c) and de novo missense mutation data sets from recent
published exome-sequencing studies2,4,5. All variants in (a) and (b) that overlap
with training data sets were excluded from testing.

We tested the performance in constrained genes (ExAC pLI ≥ 0.5) and non-
constrained gene (ExAC pLI < 0.5)15 separately.

To focus on rare variants with large effect, we selected ultra-rare variants with
MAF < 10−4 based on gnomAD database to filter variants in both training and
testing data sets. We applied additional filter of MAF < 10−6 for variants in
constrained genes in both cases and controls for comparison based on a recent
study21,43.

Features used in the MVP model. MVP uses many correlated features as predictors
(Supplementary Data 2). There are six categories: (1) local context: GC content within
10 flanking bases on the reference genome; (2) amino acid constraint, including
blosum6244 and pam250;45 (3) conservation scores, including phyloP 20way mam-
malian and 100way vertebrate46, GERP++47, SiPhy 29way48, and phastCons 20way
mammalian and 100way vertebrate;49 (4) Protein structure, interaction, and mod-
ifications, including predicted secondary structures50, number of protein interactions
from the BioPlex 2.0 Network51, whether the protein is involved in complexes for-
mation from CORUM database52, number of high-confidence interacting proteins by
PrePPI53, probability of a residue being located the interaction interface by PrePPI
(based on PPISP, PINUP, PredU), predicted accessible surface areas were obtained
from dbPTM54, SUMO scores in 7-amino acids neighborhood by GPS-SUMO55,
phosphorylation sites predictions within 7 amino acids neighborhood by GPS3.056,
and ubiquitination scores within 14-amino acids neighborhood by UbiProber;57

(5) Gene mutation intolerance, including ExAC metrics15 (pLI, pRec, lof_z) designed
to measure gene dosage sensitivity or haploinsufficiency, RVIS58, probability of
causing diseases under a dominant model “domino”59, average selection coefficient of
loss of function variants in a gene “s_het”37, and sub-genic regional depletion of
missense variants;21 (6) Selected deleterious or pathogenicity scores by previous
published methods obtained through dbNSFPv3.3a60, including Eigen61, VEST39,
MutationTaster62, PolyPhen263, SIFT64, PROVEAN65, fathmm-MKL66,
FATHMM66, MutationAssessor67, and LRT68.

For consistency, we used canonical transcripts to define all possible missense
variants21. Missing values of protein complex scores are filled with 0 and other
features are filled with −1.

Since pathogenic variants in constrained genes and non-constrained genes may
have different mode of action, we trained our models on constrained and non-
constrained variants separately with different sets of features (38 features used in
constrained model, 21 features used in non-constrained model, Supplementary
Data 2).

Deep learning model. MVP is based on a deep residual neural network model
(ResNet)22 for predicting pathogenicity using the predictors described above. To
preserve the structured features in training data, we ordered the features according
to their correlations (Supplementary Fig. 3). The model (Supplementary Fig. 2)
takes a vector of the ordered features as input, followed by a convolutional layer of
32 kernels with size 3 × 1 and stride of 1, then followed by 2 computational residual
units, each consisting of 2 convolutional layers of 32 kernels with size 3 × 1 and
stride of 1 and a ReLU69 activation layer in between. The output layer and input
layer of the residual unit is summed and passed on to a ReLU activation layer. After
the two convolutional layers with residual connections, 2 fully connected layers of
320 × 512 and 512 × 1 are used followed by a sigmoid function to generate the final
output70.

Sigmoid xð Þ ¼ 1
1þ e�x

(Supplementary Fig. 2). In training, we randomly partitioned the synthetic
training data sets into two parts, 80% of the total training sets for training and 20%
for validation. We trained the model with batch size of 64, used adam71 optimizer
to perform stochastic gradient descent72 with cross-entropy loss between the
predicted value and true value. After one full training cycle on the training set, we
applied the latest model weights on validation data to compute validation loss.

To avoid over fitting, we used early stopping regularization during training. We
computed the loss in training data and validation data after each training cycle and
stopped the process when validation loss is comparable to training loss and do not
decrease after 5 more training cycle, and then we set the model weights using the
last set with the lowest validation loss. We applied the same model weights on
testing data to obtain MVP scores for further analysis.

Hyperparameters in MVP. In the MVP neural network, we tested different
number of residual blocks for the model structure. With all other parameters fixed,
the model with two residual blocks contain 12,544 parameters before fully con-
nected layers, and it saturates at around 20 iterations. Deeper models lead to fast
overfitting and unstable performance in testing data sets (Supplementary Fig. 19).
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We used AUROC on cancer hotspot data to investigate the effects of the number of
residual blocks on the testing performance. When 8 and 16 residual blocks are
used, the AUROC for constrained genes are 0.885 and 0.872, respectively, and the
AUROC for non-constrained genes are 0.822 and 0.814, respectively. Other
hyperparameters we chose are commonly used in deep learning models, including
kernel size of 3, pooling size of 2, filter size of 32 and ReLU as activation functions.

Previously published methods for comparison. We compared MVP score to 13
previously published prediction scores, namely, M-CAP11, DANN73, Eigen61,
Polyphen263, SIFT64, MutationTaster62, FATHMM66, REVEL12, CADD8,
MetaSVM10, MetaLR10, VEST39, and MPC21.

Normalization of scores using rank percentile. For each method, we first
obtained predicted scores of all possible rare missense variants in canonical tran-
scripts, and then sort the scores and converted the scores into rank percentile.
Higher rank percentile indicates more damaging, e.g., a rank score of 0.75 indicates
the missense variant is more likely to be pathogenic than 75% of all possible
missense variants.

ROC curves. We plotted Receiver operating characteristic (ROC) curves and cal-
culated Area Under the Curve (AUC) values in training data with 6-fold cross
validation (Supplementary Fig. 4), and compared MVP performance with other
prediction scores in curated benchmark testing data sets (Supplementary Fig. 5)
and cancer hotspot mutation data set (Fig. 1). For each prediction method, we
varied the threshold for calling pathogenic mutations in a certain range and
computed the corresponding sensitivity and specificity based on true positive, false
positive, false negative and true negative predictions. ROC curve was then gener-
ated by plotting sensitivity against 1—specificity at each threshold.

Optimal points based on ROC curves. We define the optimal threshold for MVP
score as the threshold where the corresponding point in ROC curve has the largest
distance to the diagonal line (Supplementary Fig. 7). Based on the true positive rate
and false positive rate at the optimal points in ROC curves, we can estimate the
precision and recall in de novo precision-recall-proxy curves (Supplementary Fig. 8
and Supplementary Note 1).

Precision-recall-proxy curves. Since de novo mutation data do not have ground
truth, we used the excess of predicted pathogenic missense de novo variants in
cases compared to controls to estimate precision and proxy of recall. For various
thresholds of different scores, we can calculate the estimated number of risk var-
iants and estimated precision based on enrichment of predicted damaging variants
in cases compared to controls. We adjusted the number of missense de novo
mutation in controls by the synonymous rate ratio in cases verses controls,
assuming the average number of synonymous as the data sets were sequenced and
processed separately) (Supplementary Table 2), which partly reduced the signal but
ensures that our results were not inflated by the technical difference in data
processing.

Denote the number of cases and controls as N1 and N0, respectively; the number
of predicted pathogenic de novo missense variants as M1 and M0, in cases and
controls, respectively; the rate of synonymous de novo variants as S1 and S0, in
cases and controls, respectively; technical adjustment rate as α; and the enrichment
rate of variants in cases compared to controls as R.

We first estimate α by:

α ¼ S1
S0

ð1Þ
Then assuming the rate of synonymous de novo variants in cases and controls

should be identical if there is no technical batch effect, we use α to adjust estimated
enrichment of pathogenic de novo variants in cases compared to the controls by:

R ¼
M1
N1

M0
N0

´ α
ð2Þ

Then we can estimate number of true pathogenic variants (M0
1) by:

M0
1 ¼

M1 R� 1ð Þ
R

ð3Þ
And then precision by:

dPrecision ¼ M0
1

M1
ð4Þ

Random forest model and fully-connected neural network model. To analyze
the relative contribution of the features and the deep neural network to the
improvement over exiting methods, we trained a Random Forest (RF) model and
Fully-connected Neural Network (FCNN) model with the same features as our base
line. RF and FCNN were implemented using Python package scikit-learn and Keras
separately. We tried several hyperparameter settings of RF and FCNN, and the best
settings were determined by 10-fold cross-validation. In our RF model, we used 256

trees with depth of 12. The minimum number of examples per node that were
allowed to be split was set as 10 to alleviate overfitting. For FCNN, we used 2
hidden layers with 64 neurons and 32 neurons separately and ReLU as the acti-
vation function. We used Adam algorithm to minimize the objective function with
hyperparameters lr= 1e−4, β= 0.99, and ε= 1e−8. Early-stopping was applied
with validation error as the metric. The 10 trained models were all kept, and for
testing, we average the outputs of the 10 models as the final predicted scores.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Precomputed MVP pathogenicity score for all possible missense variants in canonical
transcripts on human hg19 can be downloaded from: https://figshare.com/articles/
dataset/Predicting_pathogenicity_of_missense_variants_by_deep_learning/13204118. All
other data supporting the findings of this study are available within the paper and its
Supplementary information files. The training and testing data can be accessed through
http://www.discovehrshare.com/downloads (DiscovEHR), http://structure.bmc.lu.se/
VariBench/substitutionsall.php (VariBench), http://www.hgmd.cf.ac.uk/ac/index.php
(HGMD), https://www.uniprot.org/docs/humpvar (UniProt), and https://ftp.ncbi.nlm.
nih.gov/pub/clinvar/vcf_GRCh37/ (ClinVar).

Code availability
Python scripts used for model training and testing are available on GitHub: https://
github.com/ShenLab/missense.
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