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Abstract

Congenital diaphragmatic hernia (CDH) is a severe birth defect that is often accompanied

by other congenital anomalies. Previous exome sequencing studies for CDH have sup-

ported a role of de novo damaging variants but did not identify any recurrently mutated

genes. To investigate further the genetics of CDH, we analyzed de novo coding variants in

362 proband-parent trios including 271 new trios reported in this study. We identified four

unrelated individuals with damaging de novo variants in MYRF (P = 5.3x10-8), including one

likely gene-disrupting (LGD) and three deleterious missense (D-mis) variants. Eight

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007822 December 10, 2018 1 / 26

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Qi H, Yu L, Zhou X, Wynn J, Zhao H, Guo

Y, et al. (2018) De novo variants in congenital

diaphragmatic hernia identify MYRF as a new

syndrome and reveal genetic overlaps with other

developmental disorders. PLoS Genet 14(12):

e1007822. https://doi.org/10.1371/journal.

pgen.1007822

Editor: Stefan Mundlos, Max Planck Institute for

Molecular Genetics, GERMANY

Received: June 13, 2018

Accepted: November 8, 2018

Published: December 10, 2018

Copyright: © 2018 Qi et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: Whole genome

sequencing data can be obtained from dbGAP

through accession phs001110.

Funding: Some exome sequencing was provided

by the University of Washington Center for

Mendelian Genomics (UW-CMG) and was funded

by the National Human Genome Research Institute

and the National Heart, Lung and Blood Institute

grant HG006493 to DN, MB, and Suzanne Leal. The

whole genome sequencing data were generated

http://orcid.org/0000-0003-2350-081X
http://orcid.org/0000-0002-0804-3529
http://orcid.org/0000-0002-9668-7729
http://orcid.org/0000-0003-1820-8603
http://orcid.org/0000-0002-9647-0861
http://orcid.org/0000-0001-9600-1160
http://orcid.org/0000-0001-5502-4497
https://doi.org/10.1371/journal.pgen.1007822
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007822&domain=pdf&date_stamp=2018-12-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007822&domain=pdf&date_stamp=2018-12-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007822&domain=pdf&date_stamp=2018-12-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007822&domain=pdf&date_stamp=2018-12-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007822&domain=pdf&date_stamp=2018-12-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007822&domain=pdf&date_stamp=2018-12-20
https://doi.org/10.1371/journal.pgen.1007822
https://doi.org/10.1371/journal.pgen.1007822
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


additional individuals with de novo LGD or missense variants were identified from our other

genetic studies or from the literature. Common phenotypes of MYRF de novo variant carri-

ers include CDH, congenital heart disease and genitourinary abnormalities, suggesting that

it represents a novel syndrome. MYRF is a membrane associated transcriptional factor

highly expressed in developing diaphragm and is depleted of LGD variants in the general

population. All de novo missense variants aggregated in two functional protein domains.

Analyzing the transcriptome of patient-derived diaphragm fibroblast cells suggest that dis-

ease associated variants abolish the transcription factor activity. Furthermore, we showed

that the remaining genes with damaging variants in CDH significantly overlap with genes

implicated in other developmental disorders. Gene expression patterns and patient pheno-

types support pleiotropic effects of damaging variants in these genes on CDH and other

developmental disorders. Finally, functional enrichment analysis implicates the disruption of

regulation of gene expression, kinase activities, intra-cellular signaling, and cytoskeleton

organization as pathogenic mechanisms in CDH.

Author summary

Congenital diaphragmatic hernia (CDH) is a life-threatening condition affecting about 1

every 3000 newborns. Although the role of genetics in the pathogenesis of CDH has been

well established, only a handful of disease genes have been identified so far. We and other

have previously shown that de novo variants, those carried by the cases but not inherited

from parents, are enriched in sporadic CDH cases consistent with their negative effects on

reproductive fitness. To further investigate the genetics of CDH, we analyzed de novo vari-

ants in 362 proband-father-mother trios from whole exome or genome sequencing data

and identified four patients carrying damaging variants in MYRF, a membrane associated

transcription factor that is highly expressed in developing diaphragm and heart. We then

ascertained a total of 12 patients with MYRF de novo variants, and found they shared com-

mon phenotype characteristics including congenital abnormalities in diaphragm, heart

and reproductive organs. The high rate of recurrence and similar phenotypic manifesta-

tions suggest that de novo variants of MYRF have pleiotropic effects and cause a novel syn-

drome. The identified new gene is reminiscent of previously identified CDH genes (e.g.,

GATA4, GATA6, NR2F2, ZFPM2, and WT1) that are also associated with other develop-

mental disorders. Indeed, we found in our cohort more than 20 damaging de novo vari-

ants in genes implicated in other developmental disorders but not previously linked to

CDH. The overlap was unlikely to occur by chance and can be best explained by their

pleiotropic effects. We also showed that, despite the shared genetic basis with other disor-

ders, damaging de novo variants in CDH as a whole were enriched in specific functional

pathways that recapitulated our current knowledge about diaphragm development. So

additional candidate genes can be prioritized based on the genetic pleiotropy and func-

tional specificity. The findings have general implications in design and analysis in genetic

studies of rare birth defects.

Introduction

Congenital diaphragmatic hernia (CDH) is a severe developmental disorder affecting 1 in

3000 live births [1, 2]. It is characterized by defects in diaphragm that allow the abdominal
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viscera to move into the thoracic cavity and is associated with pulmonary hypoplasia and in

some cases pulmonary hypertension. CDH can be isolated (50–60%) or associated with anom-

alies in other organs including the heart, brain, kidneys and genitalia [3, 4]. Despite advances

in treatment, mortality rate remains high [5, 6]. A better understanding of the causative factors

for CDH may inform disease prevention and treatment.

The genetic contribution to CDH has been established by familial aggregation [7], rare

monogenic disorders associated with CDH in humans [8], chromosome abnormalities [9],

copy number variations [10–12], and mouse models [13]. However, our understanding of the

genetic basis of CDH is still rudimentary. The historically low reproductive fitness of individu-

als with CDH led to the hypothesis that de novo variants with large effect sizes may explain a

fraction of CDH patients as in other developmental disorders [14, 15]. We and others have

previously reported an enrichment of damaging variants in sporadic CDH patients [16, 17].

However, no recurrently mutated gene was identified in our genome wide analyses due to the

limited sample size.

To continue the search for new CDH genes, we performed whole exome (WES) or whole

genome sequencing (WGS) of 271 new trios. Combined with previously published WES data

[16, 17], we analyzed all 362 trios. We confirmed the overall burden of damaging de novo vari-

ants and identified a new disease gene recurrently mutated in cases with similar syndromic

features. To prioritize additional risk genes, we analyzed cross-disorder overlap and pathway

enrichment. The results provide insights into the genetic architecture of CDH and suggest

additional candidate genes.

Results

Sample characteristics

Patients were recruited from the multicenter, longitudinal DHREAMS (Diaphragmatic Hernia

Research & Exploration; Advancing Molecular Science) study [11]. We excluded patients with

known genetic causes from clinical karyotype or chromosome microarray or with a family his-

tory of CDH. WES was performed on 118 proband-parents trios, a subset (39) of whom were

published previously [17]. WGS was performed on 192 trios including 27 without damaging

variants from the previous study [17]. On average, 91% of coding regions in WES samples and

98% in WGS samples were covered by 10 or more unique reads (S1 Fig). WGS showed more

uniform distribution of sequencing depth that contributes to higher power in detecting coding

variants [18, 19]. For the 27 overlapping samples, 12 additional de novo coding variants were

identified in WGS including 10 not included in the exome targets or with low depth of cover-

age and two that failed stringent QC filters in our previous study.

Combined with trios collected by Boston Children’s Hospital/Massachusetts General Hos-

pital (BCH/MGH) [16], we analyzed a total 362 unique trios (S1 Table). Clinical and demo-

graphic information of patients are given in S1 Data. In the combined cohort, there were 212

(58.6%) male and 150 (41.4%) female patients. The male-to-female ratio (1.4:1) was consistent

with published retrospective and prospective cohorts [20, 21]. The most common type of

CDH was left-sided Bochdalek; rare forms of CDH or atypical lesion sides were also included

(Table 1).

A total 149 (41.2%) cases had additional congenital anomalies or neurodevelopmental dis-

orders (NDD) at the time of last follow up and were classified as complex cases; and 209

(57.7%) patients had no additional anomalies at last contact were classified as isolated cases.

The most frequent comorbidity among complex cases was cardiovascular anomalies (44.3%).

NDD, skeletal malformations, and genitourinary defects were also observed in complex cases

(Table 1).
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Burden of de novo coding variants

We identified 471 coding de novo variants in 264 (72.9%) cases including 430 single nucleotide

variants (SNV) and 41 indels. Transition-to-transversion ratio of de novo SNVs was 2.64. The

number of de novo coding variants per proband closely followed a Poisson distribution, with

an average of 1.32 in WGS trios and 1.28 in combined WES trios (S2 Fig). Variants that were

likely gene disrupting (LGD) or predicted deleterious missense (“D-mis” defined by CADD

score [22]�25) were considered as damaging. A total of 193 damaging variants (57 LGD and

Table 1. Clinical summary of patients.

Number Percent

Gender

Male 212 58.6%

Female 150 41.4%

CDH classification

Isolated 208 57.5%

Complex 149 41.2%

Unknown 5 1.4%

Lesion side

Left 270 74.6%

Right 56 15.5%

Eventration/Morgagni/Agenesis 11 3.0%

Unknown 25 6.9%

CDH type

Bochdaleck 294 81.2%

Other# 22 6.1%

Unknown 46 12.7%

DHREAMS cohort (n = 283): Time of recruitment

Neonatal 229 80.9%

Fetal 9 3.2%

Child 45 15.9%

Discharge vital status (n = 283)

Survived 241 85.2%

Deceased 42 14.8%

Development assessment¶ (n = 283)

At 2 years follow-up 152 53.7%

At 5 years follow-up 70 24.7%

No assessment at either 2 or 5 years 128 45.2%

Additional anomalies in complex cases (n = 149)

Cardiovascular 66 44.3%

Neurodevelopmental§ 37 24.8%

Skeletal 26 17.4%

Genitourinary 14 9.4%

Gastrointestinal 13 8.7%

¶ Development assessment at 2 years follow-up include Vineland Adaptive Behavior Assessment (Vineland-II) and/

or Bayley Scales of Toddler Development (Bayley-III); tests at 5 years follow-up include Vineland-II and/or Wechsler

Preschool and Primary Scale of Intelligence (WPPSI).

§Neurodevelopmental conditions include congenital abnormalities in central nerves system, and developmental

delay or neuropsychiatric disorders based on the follow-up developmental evaluations.

https://doi.org/10.1371/journal.pgen.1007822.t001
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138 D-mis) were identified in 150 (41.4%) cases, including 38 (10.5%) cases harboring two or

more such variants. Compared with the baseline expectations (Material and methods) [23],

both de novo LGD variants (0.16 per case) and D-mis variants (0.38 per case) were significantly

enriched in cases (fold enrichment (FE) = 1.73, P = 8.6x10-5 by one-sided Poisson test for

LGD; FE = 1.5, P = 1.1x10-6 for D-mis) while the frequency of silent variants closely matched

the expectation (0.30 per case, FE = 1.01, P = 0.48 by one-sided Poisson test).

Consistent with the previous study [16], damaging variants showed a higher enrichment in

complex cases than isolated cases (FE = 1.70 vs 1.64 for LGD, 1.61 vs 1.38 for D-mis; S2 Table);

and the proportion of complex cases who carried damaging variants was higher than isolated

cases (43.6% vs. 39.4%). Burden of damaging variants was also higher in female than male

cases (FE = 2.09 vs 1.47 for LGD, 1.63 vs 1.36 for D-mis; S2 Table), supporting a “female pro-

tective model” similar to autism and other NDD with male bias [24, 25].

Recent studies highlighting the use of large population reference sequencing data in inter-

preting LGD variants has demonstrated that genes depleted of LGD variants in the general

population were more likely associated with disorders with reduced reproductive fitness[26].

We defined constrained genes by the estimated probability of loss-of-function intolerance

(pLI) [27]�0.5 and found the burden of LGD variants was largely explained constrained

genes (Table 2). D-mis also showed a higher enrichment in constrained genes (Table 2).

MYRF is a new syndromic CDH gene

We identified eight genes affected by more than one de novo LGD or missense variant (S3

Table). The top ranked gene, MYRF, has one frameshift insertion and three damaging mis-

sense variants, all of which were validated by Sanger sequencing. It is the only constrained

gene in the list. By comparing with baseline expectations, only MYRF reaches genome-wide

significance after Bonferroni correction of ~20000 coding genes (P = 5.3x10-8 <0.01/20000, by

one-sided Poisson test).

Notably, all four patients with MYRF variants also had congenital heart disease (CHD), and

three of them had genital anomalies including blind-ending vagina in a female and ambiguous

genitalia or undescended testes in two male cases (Table 3). By screening another 220 CDH

Table 2. Burden of de novo coding variants.

Gene Sets Variant class Number of variants Baseline expectation Fold enrichment P-value

All Genes Synonymous 110 109.1 1.01 0.48

Missense 295 250.6 1.18 3.42E-03

D-mis 138 93.7 1.47 1.08E-05

LGD 57 32.9 1.73 8.60E-05

Constrained Genes Synonymous 34 38.8 0.88 0.80

Missense 112 88.1 1.27 7.91E-03

D-mis 59 38.0 1.55 9.39E-04

LGD 30 12.0 2.50 9.05E-06

Other Genes Synonymous 76 70.3 1.08 0.26

Missense 184 162.6 1.13 0.053

D-mis 80 55.7 1.44 1.28E-03

LGD 27 20.9 1.29 0.11

Constrained genes are defined by pLI metrics�0.5. LGD: likely gene disrupting, including frameshift, stop-gain, stop-loss, and variants at canonical splice sites; D-mis:

predicted deleterious missense variants defined by CADD Phred score�25. The baseline expectations for different types of variants were calculated by the previous

published method[23, 28]. The enrichment of observed number of variants was evaluated by a one-sided Poisson test.

https://doi.org/10.1371/journal.pgen.1007822.t002
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trios collected by the DHREAMS study, we identified another patient harboring a de novo
splice acceptor site variant. The female patient had a diagnosis of Scimitar syndrome (a com-

plex form CHD). She also had a monozygotic twin sister with hypoplastic left heart syndrome

who also carried the same variant but no known CDH.

Given the strong association of MYRF variants with CHD, we then searched for de novo
variants from a recently published study of CHD conducted by Pediatric Cardiac Genomics

Consortium (PCGC) [29] and identified three additional de novo missense variants in MYRF
from 2645 trios. All CHD patients also had genitourinary anomalies, including a patient with

Swyer syndrome (46XY karyotype with female reproductive organs). One CHD patient with

the Q403H variant had hemidiaphragm eventration. Recently, Pinz et al. [30] and Chitayat

et al [31] reported three additional cases with complex CHD who carried de novo LGD variants

in MYRF. All cases had genital defects, and one had CDH and the other two had pulmonary

hypoplasia. Furthermore, from clinical WES, we also identified a Swyer syndrome patient with

a stop-gain variant in MYRF who had dextrocardia and pulmonary hypoplasia.

Table 3. Phenotype characteristics of patients with de novo coding variants in MYRF.

Study Sample

ID

Genetic

Sex#
De novo variant

(NM_001127392.2)

CADD

Phred

Diaphragm

defect

Cardiovascular defect Urogenital defect Other malformations

Current

study

01–1008 XY c.235dupG:

p.G81Wfs�45

- L-CDH ASD,VSD,ToF Bilateral undescended

testes

No

01–0429 XX c.1303G>A:p.G435R 32 L-CDH VSD No internal genital organs,

blind-ending vagina

Accessory spleen

04–0042 XY c.2036T>C:p.V679A 25.9 L-CDH ASD,VSD Unknown Unknown (Deceased)

05–0050 XY c.2084G>A:p.R695H 34 CDH HLHS Ambiguous genitalia,

undescended testes

Intellectual disability

and motor delay at 2

years old

01–0033 XX c.1904-1G>A 25 R-CDH Scimitar syndrome Unknown Unknown (Deceased)

01–

0591�
XX No HLHS Unknown Unknown (Deceased)

CHU-11 XY c.1786C>T:p.Q596� 37 No Dextrocardia Swyer syndrome with

female genitalia

Right pulmonary

hypoplasia

PCGC

[29]

1–02264 XY c.1160T>C:p.F387S 27.9 No AAH, CoA, HLHS Ambiguous genitalia,

hypospadias, undescended

testis

No

1–03160 XY c.1209G>C:p.Q403H 27.6 Right hemi-

diaphragm

eventration

Scimitar syndrome,

AAH, ASD, BAV,

HLHS, MS, VSD

Undescended testis Lung hypoplasia

1–07403 XY c.1435C>G:p.L479V 23.9 No BAV, CoA Swyer syndrome with

female genitalia

Short stature

Pinz et al.

[30]

Case 1 XY c.2336+1G>A 26.8 No Scimitar syndrome,

cor triatriatum

Penoscrotal hypospadias,

micropenis, unilateral

cryptorchidism

Mild speech delay,

pulmonary hypoplasia,

tracheal anomalies

Case 2 XY c.2518C>T:p.R840� 44 R-CDH Scimitar syndrome Persistent urachus,

Undescended testis

Cleft spleen, thymic

involution, thyroid

fibrosis

Chitayat

et al. [31]

Fetus

case

XY c.1254_1255dupGA: p.

T419RfsX14

- No HLHS Ambiguous external

genitalia, right hepato-

testicular fusion and left

spleno-testicular fusion

Mild pulmonary

hypoplasia, intestinal

malrotation

Abbreviations: L/R-CDH, (lef/right)-congenital diaphragmatic hernia; AAH, aortic arch hypoplasia; ASD, atrial septal defect; BAV, bicommissural aortic valve; CoA,

coarctation of aorta; VSD, ventricular septal defects; ToF, Tetralogy of Fallot; MS, mitral stenosis; PCGC, Pediatric Cardiovascular Genetics Consortium.

� 01–0591 is the monozygotic twin of 01–0033.

# Genetic sex is based upon the chromosome complement.

https://doi.org/10.1371/journal.pgen.1007822.t003
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In total, we identified 13 patients harboring 12 different de novo functional variants in

MYRF (6 LGD and 6 missense variants; Fig 1A). All patients had CHD; and excluding those

who died in infancy and had incomplete phenotypic information, all patients also had genito-

urinary anomalies. CDH was present in 7 out of 12 patients, and diaphragm defects were not

systematically evaluated in cases without reported CDH. There was no clear phenotypic differ-

ence between patients with LGD variants and those with missense variants (Table 3). Taken

Fig 1. De novo coding variants in MYRF and their functional impact on transcriptome. (a) Schematic diagram of the MYRF protein structure. DBD: DNA

binding domain; ICA: Intramolecular chaperone auto-processing domain; Pro-rich: proline-rich region; TM: transmembrane helix. The position of DBD and

ICA were based on the annotation from InterPro, and Pro-Rich and TM were from SwissProt. The coordinates are given with respect to the canonical isoform

(1151 amino acids). The relative position of 12 de novo coding variants are displayed, including 6 discovered in the current study (shown in red), and five from

published studies of congenital heart disease (CHD) [29, 30] (shown in blue). LGD variants are shown on top of the protein; and missense variants are on the

other side. Shown below the protein structure is the density of missense variants in gnomAD (http://gnomad.broadinstitute.org/). A missense constraint region

[37] is highlighted in red (observed/expected number of missense variants = 0.31) (b) Z-score for each gene is the standardized expression level across samples.

Mean Z-scores of MYRF target genes in three MYRF variant carriers were shifted to the lower end as compared with other genes. (c) Gene-set enrichment

analysis (GESA) was applied to genes ranked by the estimated fold change of expression level comparing MYRF variant carriers with other cases. The MYRF

target genes tend to have lower ranks and majority of them were down-regulated in MYRF variant carriers (NES = -2.10, P<5.0E-4).

https://doi.org/10.1371/journal.pgen.1007822.g001

De novo variants in congenital diaphragmatic hernia

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007822 December 10, 2018 7 / 26

http://gnomad.broadinstitute.org/
https://doi.org/10.1371/journal.pgen.1007822.g001
https://doi.org/10.1371/journal.pgen.1007822


together, the unique association of CDH and similar non-diaphragm defects including CHD,

Scimitar syndrome, genitourinal anomalies and sex reversal in 46XY patients with de novo var-

iants in MYRF establish it as a new syndromic CDH gene.

MYRF is a highly constrained gene in the population (pLI = 1). By examining both public

databases (ExAC and gnomAD) and our own cohort, we only identified two rare LGD variants

that affect all functional isoforms, yet their functional consequences were not clear (S5 Table).

We also searched for inherited variants in 362 CDH trios and 2645 CHD trios from PCGC but

did not find any inherited LGD variants in probands. Enrichment for de novo LGD variants

associated with CDH and near complete absence of loss-of-function variants in the general

population suggest that variants causing loss of MYRF function are likely fully penetrant for

one or more aspects of this syndrome. All six de novo missense variants identified patients

were also absent from the public databases, consistent with their high penetrance as LGD vari-

ants in this gene.

Functional analysis of MYRF variants

MYRF is a membrane-associated transcription factor that plays a pivotal role in oligodendro-

cyte differentiation and myelination [32, 33]. Although it has not previously been implicated

in diaphragm or cardiac development, its expression level was ranked at the top 21% of genes

expressed in mouse developing diaphragm at E11.5 [34] and top 14% in developing heart at

E14.5 [35].

The MYRF protein has two functional isoforms. Both isoforms contain a N-terminal pro-

line-rich region followed by a DNA binding domain (DBD), which can be cleaved from the

membrane by a region called intramolecular chaperon auto-processing (ICA) domain. All

frameshift and stop gained variants resulted in truncated protein products in both functional

isoforms and may trigger non-sense mediated decay. The precise functional effects of splice

site variants were not evaluated, but are predicted to cause exon skipping, intron retention or

activation of cryptic splice site and also result in a truncated protein. All six missense variants

aggregated in the two DBD and ICA functional domains (Fig 1a). The missense variants were

predicted as deleterious by a majority of bioinformatics tools (S4 Table). Most of the affected

amino acid residues are highly conserved across species (S3 Fig).

MYRF DBD is homologous to yeast transcriptional factor Ndt80 but MYRF can only func-

tion as a trimer [36]. All missense variants in this domain are located in a region depleted of

missense variants in the population (observed/expected = 0.31; Fig 1A) and have high MPC

scores [37] (S4 Table). Protein structure modeling predicted that those variants may affect

DNA binding affinity (F387S), change surface charge distribution (Q403H), or destabilize the

protein structure (G435R and L479R) (S4 Fig).

Previous studies also showed that full length MYRF forms a trimer before cleavage, and tri-

merization is required for auto-cleavage and subsequent activation [38]. The ICA domain which

is distantly related to bacteriophage’s tailspike protein was believed to play an essential role in

MYRF trimerization. Two missense variants (V679A, R695H) are located at the C-terminal end

of the ICA domain where the triplet helix bundle is formed [39]. V679 is one of the critical resi-

dues in ICA that is fully conserved from human to bacteriophage (S3 Fig). Structure modeling

predicted that the variant R695H may destabilize the trimer structure (S4 Fig) and would fail to

produce functional MYRF DBD trimers by trimerization-dependent auto-proteolysis.

To evaluate the effect of MYRF variants on gene expression, we performed RNA-seq on dia-

phragm fibroblast cell cultures from neonatal patients. After removing outlier samples (S5

Fig), we obtained transcriptome data of 31 patients including three with a de novo MYRF vari-

ant (one frameshift insertion and two missense variants in the ICA domain). Most patients
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(27/31, 87%) included in the RNA-seq analysis were self-reported non-Hispanic White. Addi-

tionally, we identified 74 putative MYRF target genes from a previous study of rat oligoden-

drocyte progenitor cells (S3 Data) [40]. Gene expression levels were quantified as TPM

(transcripts per million mapped reads). The z-scores of expression levels of putative MYRF tar-

get genes were systematically shifted down in MYRF mutant cells (P = 2.4E-7 by Kolmogorov-

Smirnov test; Fig 1B), consistent with the reduced transcription factor activities caused by the

damaging variants. We quantified differential expression (DE) of genes between samples with

and without de novo MYRF variants by a shrinkage estimator of fold change [41]. Selected DE

genes were validated by quantitative polymerase chain reaction (qPCR) on the same cell cul-

tures (S7 Fig). Using gene set enrichment analysis [42] of genes ranked by the fold changes,

putative MYRF target genes are significantly enriched among the down-regulated genes (nor-

malized enrichment score (NES) = -2.10, P<5.0E-4; Fig 1C). Since all MYRF mutation carriers

were males, we repeated the analysis using only males and found the results are similar as

using all samples (NES = -1.95, P<5.0E-4), suggesting that sex is not a confounding factor.

The patient with the MYRF frameshift variant was the only MYRF mutation carriers whose

ethnicity was not self-reported White. The enrichment of MYRF target genes is also observed

in genes down-regulated in the two samples with missense variants (S6 Fig), suggesting that

the result was not driven by the LGD variant or ethnicity.

Manual inspection of top DE genes (S4 Data) revealed that GATA4, a known CHD gene

that has also been implicated in familial and sporadic CDH [43], was significantly down-regu-

lated in cases with de novo MYRF variants (estimated fold change = 0.54, q-value = 0.03). Inter-

estingly, we observed that expression trajectories of MYRF and GATA4 were similar in mouse

developing diaphragm and lung (S8 Fig) suggesting that they play similar functional roles dur-

ing diaphragm and pulmonary development.

Besides MYRF, we estimated there were 64 (95% CI: 38–93) genes with de novo variants

implicated in CDH based on the overall burden analysis. Most of those genes have only one

damaging variant in the cohort. To prioritize among all the genes with de novo damaging vari-

ants, we took two approaches.

Genetic overlap with other disorders

We noted that CHD was the most common non-diaphragm defect in complex cases (Table 1).

Damaging mutations in MYRF have been identified in a previous CHD study but the gene did

not reach genome-wide significance [29]. The identification of the MYRF syndrome suggested

that the comorbidity of CHD and CDH in some cases can be explained by the same genetic

factors, many of which remain to be discovered. CDH is also part of the phenotype spectrum

of several rare Mendelian disorders [8]. Recently discovered genes for developmental disorders

are often pleiotropic and implicated in multiple diseases [15, 29, 44]. Thus, the finding of

MYRF motivated us to assess the genetic overlap between CDH and other developmental dis-

orders, especially CHD, to help us prioritize additional CDH genes with pleiotropic effects. To

this end, we curated genes that were known or implicated in CHD and other developmental

disorders (S5 Data; Materials and Methods). Hereafter we refer to these known or candidate

genes as CHD or DD genes.

In addition to MYRF, we identified a total of 26 DD/CHD genes with damaging de novo
variants in 25 CDH patients (Fig 2A). Using a simulation approach that accounted for the

number of variants, gene size, and sequence context (Materials and Methods), we found that

damaging variants in CDH were significantly enriched in the DD and CHD genes (Fig 2B).

For example, we observed 6 CHD genes with de novo LGD variants in CDH which was

4.7-fold higher than expected (P = 1.7x10-3); the number of DD genes with de novo LGD
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variants (8) was 3.4 folder higher than expected (P = 2.3x10-3). Among CHD genes with at

least one damaging variant in CDH, haploinsufficiency of WT1 is a known cause of several

syndromic forms of CDH [8]; ZFPM2 and GATA6 have already been established as CDH

genes by previous studies [45, 46]. However, the enrichment of damaging variants and espe-

cially LGD variants remained significant after excluding known or candidate CDH genes [47]

(S9 Fig). Furthermore, the enrichment cannot fully be explained by the over-representation of

constrained genes, because the enrichment persisted after conditioning on all constrained

genes and remained significant for LGD variants (S9 Fig).

Fig 2. Genetic overlap with other developmental disorders. (a) Venn diagram shows 25 genes implicated in developmental disorders and congenital heart disease

(DD and CHD genes, Materials and Methods) that are affected by damaging variants in CDH. (b) Enrichment of LGD and D-mis variants in DD and CHD genes.

Enrichment was evaluated by comparing the observed number of de novo damaging variants in DD and CHD genes with the expected number of hits by randomly

scattering the same number of variants to the exome while controlling for the number of variants, gene length, and sequence context (Materials and Methods). (c)

Expression percentile ranks in the developing diaphragm [34], heart [70] and brain [70] are shown for all genes (green density), highlighting DD and CHD genes

listed in (b). Smaller ranks correspond to higher expression levels.

https://doi.org/10.1371/journal.pgen.1007822.g002
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The cross-disease overlap suggests that pleiotropic effects of variants in the genes associated

with other developmental disorders are also associated with CDH in a fraction of cases. Since

CHD genes were curated based on the damaging mutations in CHD patients and DD genes

were mostly implicated in other developmental disorders, the genes that appear in both sets

were more likely to participate in a broader range of developmental process. Accordingly, the

enrichment in genes found exclusively in one set was significantly reduced (Fig 2B, S9 Fig).

We reviewed the most recent medical records of those patients (S7 Table) and identified six

complex cases with CHD and/or NDD compatible with the initial reported phenotypes for

these genes. Two additional cases were found to have non-CHD cardiovascular defects like

two-vessel cord or dilated aortic root; and another four had mild-to-moderate developmental

delay/intellectual disability at latest evaluation. Four patients who carried LGD variants in

known DD genes (POGZ, ARID1B, FOXP1, and SIN3A) and one patient who carried a known

activating variant in the Noonan syndrome gene PTPN11 were considered pathogenic variants

by the American College of Medical Genetics and Genomics guidelines [48].

Pleiotropy was further supported by the gene expression data. The majority of the 26 DD/

CHD genes with damaging de novo variants in CDH were not only highly expressed in mouse

developing diaphragm but also in developing heart or brain (Fig 2C). Indeed, over all coding

genes, expression ranks in the three developing organs were highly correlated (Spearman rank

correlation r = 0.74 between diaphragm and heart, 0.74 between diaphragm and brain). There-

fore, high diaphragm expression can be a proxy for a pleiotropic effect. Consistent with this,

we found that all damaging de novo variants in complex cases, presumed to enrich causative

variants affecting multiple organs, were greatly enriched in genes at the top quartile of expres-

sion in developing diaphragm (FE = 4.6, P = 7.9x10-7 by one-sided Poisson test for LGD;

FE = 2.4, P = 1.8x10-4 for D-mis). By contrast, in isolated cases, the enrichment of damaging

variants was distributed in genes across a broad range of expression (Fig 3).

Functional enrichment map

As a second approach to prioritize CDH genes, we hypothesized that different CDH genes

converge onto a small number of pathways, and novel genes in the enriched pathways could

be candidates for new disease genes. We evaluated functional enrichment of genes affected by

damaging de novo variants to identify biological processes involved in CDH. To boost the sig-

nal, only constrained genes or known haploinsufficient genes were included in the pathway

analysis (Materials and Methods). A total of 63 Gene Ontology Biological Process gene sets

were enriched at a false discovery rate (FDR) of 0.1 (S6 Data). To remove the redundancies

between gene sets, we used a similarity score to organize functionally related gene sets into a

network. The resulting network was annotated and visualized as a functional enrichment map

(Fig 4A). Eleven functional groups were identified that recapitulated our current knowledge

about the molecular genetic basis of CDH [49]. They were supported by 48 genes including 27

novel genes (Fig 4B).

Transcription factor haploinsufficiency is an established cause of CDH [50] and other birth

defects [51]. Recently, disruption of epigenetic machinery was also found to underlie many

developmental disorders [35, 44, 52]. The majority of DD/CHD genes directly or indirectly

regulate gene expression which formed a highly connected cluster of enriched gene sets, some

of the transcription factors are involved in the development of heart, lung and reproductive

organs. We identified nine novel genes encoding transcription factors or histone modifiers.

Proper cell migration is critical during diaphragm development. Initially, mesenchymal

precursor cells migrate from mesoderm to form the primordial diaphragm. After that, pleuro-

peritoneal folds of the primordial diaphragm become the targets of migration of muscle
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progenitors, where they undergo myogenesis and morphogenesis [53]. Several related path-

ways were implicated including cellular response to growth factors or stress events that initiate

directional migration [54], actin cytoskeletal organization and cell-cell junction assembly that

drive and fine tune cell movement [55, 56]. Gene sets in protein phosphorylation and JUN--

MAPK (mitogen-activated protein kinase) cascades were also enriched but not entirely due to

three Noonan syndrome genes (PTPN11, BRAF, RAF1). The enrichment in kinase activity

related pathways was supported by six novel kinase genes that overlapped with intracellular

signaling functions. One kinase gene, MAPK8IP3, has been implicated in lung development in

a mouse model [57].

Discussion

In this study, by analyzing de novo coding variants in CDH, we confirmed the overall enrich-

ment of damaging de novo variants and identified MYRF as a new syndromic CDH gene. All

our CDH cases with MYRF mutations also had CHD and most of them had genitourinary

defects. The striking phenotypic similarities among the cases suggest that damaging de novo
variants of MYRF disrupt the function of progenitor cells of developing diaphragm, heart and

reproductive organs. In this novel MYRF syndrome, all cases with disease associated variants

had CHD including three with Scimitar syndrome, whereas penetrance CDH was incomplete.

It suggests that the manifestation of CDH in this syndrome depends on other genetic, environ-

mental, or stochastic factors. The monozygotic twin case discordant for CDH supports that

stochastic developmental events are involved.

MYRF is well known for its function in regulating myelination of the central nervous sys-

tem [32]. A mouse model with conditional deletion of MYRF in oligodendrocyte precursors

has abnormal motor skill [58]. Recently, an inherited missense variant in MYRF (Q403R) has

Fig 3. Burden of damaging de novo variants in different gene sets and sub classes of CDH. (a) In complex cases,

LGD variants were dramatically (4.6 fold) enriched in genes highly expressed (ranked in the top quartile) in mouse

developing diaphragm (MDD) [34], and showed no enrichment in other quartiles. By comparison in isolated cases,

LGD variants showed similar enrichment (~2 fold) across expression levels. (b) D-mis variants carried by complex

cases also showed highest (2.4 fold) enrichment in the top quartile of MDD expression. Enrichment was evaluated by

comparing observed number of variants to the baseline expectation[23, 70] using a one-sided Poisson test. Bars

represent the 95% confidence intervals of estimated fold enrichment.

https://doi.org/10.1371/journal.pgen.1007822.g003
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been reported as the cause of encephalopathy with reversible myelin vacuolization in a Japa-

nese pedigree [59]. This variant is located at the same residue as the de novo missense variant

in one of the PCGC cases but with a different substutition (Q403H). No other congenital

defects were reported for the variant carriers in that family. The Q403R variant has been exper-

imentally shown to diminish the transcription activity of a target gene [59], similar to our find-

ing in two other missense variants (S6 Fig). Why the two different substitutions at the same

amino acid position result in different phenotypes remains to be elucidated in the future.

Among patients with de novo damaging variants in MYRF, one individual with the R695H var-

iant also had intellectual disability and delayed motor skills (Table 3).

We identified 25 other individuals harboring damaging de novo variants in known or candi-

date DD/CHD genes, most of which have not been reported to be associated with CDH before.

The significant enrichment of damaging variants among DD/CHD genes strongly suggest their

causative role for majority of these cases. Similar to the case of MYRF, many DD/CHD genes

have yet to be established as known disease genes. The enrichment of CDH damaging variants

support their possible involvement in a broader range of developmental abnormalities which

should be further evaluated in additional case cohorts with other congenital anomalies. Some

recent studies of other congenital anomalies and developmental disorders have already pro-

vided further evidence for a few putative DD/CHD genes. For example, a damaging missense

variant in LAMA5, a gene that plays a role in the maintenance and function of the extracellular

matrix critical for pattern formation during development [60], was associated with multi-system

syndrome in an Italian family [61]. Duplication of STAG2, which encodes a subunit of cohesin

complex, was associated with intellectual disability and behavioral problems [62]. MEIS2 was

previously nominated as a potential CDH candidate by transcriptome analysis [34] and encodes

an interaction partner of transcription factor gene PBX1, haploinsufficieny of which has

recently been associated with multiple developmental defects including CDH [63].

Since our knowledge of DD/CHD genes is incomplete, it is possible that this observed

genetic overlap represents only the tip of an iceberg. Our pathway analysis not only captured

general biological process during developmental, but also identified pathways that are closely

related to diaphragm development. Some novel genes prioritized by the pathway analysis have

also been supported by new genetic data in other disorders. For example, de novo copy number

loss or missense variants in TAOK2, one of the kinase gene implicated by the enriched gene

sets of the kinase activity and MAPK signaling, has been demonstrated to cause autism and

other NDD [64]. Because CDH is a relatively uncommon and lethal condition as are many

other rare congenital anomalies, it is difficult to recruit large numbers of patients for genetic

studies. The findings from this and other studies [15] suggest that cross-disorder analysis can

be a powerful strategy for future gene discovery.

The genetic overlap between CDH and other disorders is consistent with pleiotropy among

developmental disorder genes and is further supported by the highly correlated gene expres-

sion levels in multiple developing organs. We also showed that different enrichment patterns

of de novo damaging variants between complex and isolated CDH cases is consistent with the

hypothesis that variants in complex cases affect genes with more pleiotropic effects.

The pleiotropic effects of genes during development also suggest that our current classifica-

tion of “isolated” cases may understate their non-diaphram abnormalities. A limitation of our

Fig 4. A functional enrichment map of genes affected by de novo damaging variants in CDH. (a) Enrichment results were visualized by a

network of gene sets, where node size is proportional to the number of genes in each gene set and the thickness of edge represents the overlaps

between gene sets. The significance of enrichment (p-value) is indicated by the color gradient. Functionally related gene sets are circled and

manually labeled. Sub-clusters of network with similar functional annotations are grouped together as functional modules. (b) Mapping genes

affected by damaging variants in CDH to the enriched functional groups shown in (a).

https://doi.org/10.1371/journal.pgen.1007822.g004
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study is the lack of long term clinical outcome data on many of the patients since our cohort is

still relatively young. Examining the most recent medical records of patients with variants in

DD/CHD genes revealed mild-to-moderate cadiovascular or NDD symptoms in several cases

initially classified as isolated at birth (S7 Table). The medical records were often incomplete

for patients who died at early infancy or were lost to follow-up (Table 1), and it is likely that

NDD outcome in many isolated patients were underestimated [65, 66]. Furthermore, almost

all isolated cases also had pulmonary hypoplasia. Traditionally it was assumed that lung defects

were caused by the mechanical compression by the herniated visceral, but it is clear now that

development of lung and diaphargm are two intricatelly connected developmental processes

[67], and lung defects may share common etiologies with CDH [68]. Among MYRF variant

carriers, four patients who did not have diaphragm defects developed pulmonary hypoplasia

(Table 3), further supporting common genetic control of these two processes. Larger cohorts

with more detailed neurodevelopmental and long term outcomes will enhance our ability to

identify additional CDH genes and provide accurate prognostic information to families to

allow for future clinical diagnosis of these conditions.

In summary, our analysis of de novo coding variants in 362 CDH trios identified a new dis-

ease gene MYRF, revealed genetic overlap with other developmental disorders, and identified

biological processes important for diaphragm development. Future studies will beneifit from

larger sample sizes, analyzing different types of genetic variants, leveraging the information

from other developmental disorders, and integrating functional genomic data.

Materials and methods

Patients recruitment

Study subjects were enrolled by the DHREAMS study (http://www.cdhgenetics.com/). Neo-

nates, children and fetal cases with a diagnosis of diaphragm defects were eligible for

DHREAMS. Clinical data were collected from the medical records by study personnel at each

of 16 clinical sites. A complete family history of diaphragm defects and major malformations

was collected on all patients by a genetic counsellor. A blood, saliva, and/or skin/diaphragm

tissue sample was collected from the patient and both parents. All studies were approved by

local institutional review boards, and all participants or their parents provided signed

informed consent.

Cases without known pathogenic chromosome abnormalities or copy number variations

[11] were selected for exome or whole-genome sequencing. A total of 283 trios with no family

history of CDH with three generation and not born to consanguineous marriages were

included in the current study. De novo coding variants on a subset trios (n = 39) have been

described in our previous study [17]. In Neonates cohort, longitudinal follow-up data includ-

ing Bayley III and Vineland II developmental assessments since discharge at 2 years and/or 5

years of age were gathered. Patients were evaluated to have developmental delay if at least one

of the composite scores was 2 standard deviations below population average.

Patients with additional birth defects or developmental delay or other neuropsychatric phe-

notypes at last contact were classified as complex, and otherwise as isolated. Pulmonary hypo-

plasia, cardiac displacement and intestinal herniation were considered to be part of the

diaphragm defect sequence and were not considered to be additional birth defects.

Subjects of BCH/MGH cohort were enrolled in “Gene Mutation and Rescue in Human

Diaphragmatic Hernia” study as described previously [16]. Among 87 trios from BCH/MGH

cohort, 8 trios were found to be duplicates with DHREAMS trios and were excluded from the

analysis.
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Whole exome/genome sequencing

Exome sequencing was performed in 79 trios that were not published before. Eleven trios were

processed at the New York Genome Center. The DNA libraries were prepared using the Illu-

mina TruSeq Sample Prep Kit (Illumina). The coding exons were captured using Agilent Sure-

Select Human All Exon Kit v2 (Agilent Technologies). Samples were multiplexed and

sequenced with paired-end 75bp reads on Illumina HiSeq 2500 platform according to the

manufacturer’s instructions. Sixty-eight trios processed at University of Washington North-

west Genome Center were captured using NimbleGen SeqCap EZ Human Exome V2 kit

(Roche NimbleGen), and sequeced on HiSeq 4000 in 75 bp paired-end reads.

Another 192 trios were processed at Baylor College of Medicine Human Genome Sequenc-

ing Center using whole genome sequencing as part of the Gabriella Miller Kids First Pediatric

Research Program. Among these, 27 trios were included in the previous exome study [17] but

had no damaging de novo variants. Genomic libraries were prepared by the Illumina TruSeq

DNA PCR-Free Library Prep Kit (Illumina) with average fragment length about 350 bp, and

sequenced as paired-end reads of 150-bp on Illumina HiSeq X platform.

De novo variant calling and annotation

Exome and whole-genome sequencing data were processed using an inhouse pipeline imple-

menting GATK Best Practice (version 3). Briefly, reads were mapped to human genome refer-

ence (GRCh37) using BWA-mem (version 0.7.10); duplicated reads were marked using Picard

(version 1.67); variants were called using GATK (version 3.3–0) HaplotypCaller to generate

gVCF files for joint genotyping. All samples within the same batch were jointly genotyped and

variant quality score recalibration (VQSR) was performed using GATK. Common SNP geno-

types within exome regions were used to valid parent-offspring relationships using KING (ver-

sion 2.0) [69].

A variant that was presented in the offspring and had homozygous reference genotypes in

both parents was considered to be a potential de novo variant. We used a series of stringent fil-

ters to identify de novo variants as described previously[70]. Briefly, we first kept variants that

passed VQSR filter (tranche�99.8 for SNVs and�99.0 for indels) and had GATK’s Fisher

Strand�25, quality by depth�2. Then we required the candidate de novo variants in proband

to have�5 reads supporting alternative allele,�20% alternative allele fraction, Phread-scaled

genotype likelihood�60 (GQ), and population allele frequency�0.1% in ExAC; and required

both parents to have> = 10 reference reads, <5% alternative allele fraction, and GQ�30.

We used ANNOVAR [71] to annotate functional consequence of de novo variants on GEN-

CODE (v19) protein coding genes. All coding de novo variants were manually inspected in the

Integrated Genomics Viewer (http://software.broadinstitute.org/software/igv). A total of 169

variants were selected for validation using Sanger sequencing; all of them were confirmed as

de novo variant. The number of coding de novo variants per proband was compared with

expectations under Possion distribution.

All coding variants were classified as silent, missense, inframe, and likely-gene-disrupting

(LGD, which includes frameshift indels, canonical splice site, or nonsense variants). The most

severe functional effect was assigned to each variant. We defined deleterious missense variants

(D-mis) by phred-scaled CADD (version 1.3) [22] score�25.

De novo variant burden analysis

Baseline rate for different classes of de novo variants in each GENCODE coding gene were

using a previously described mutation model [23, 70]. Briefly, the tri-nucleotide sequence con-

text was used to determine the probability of each base in mutating to each other possible base
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(precomputed rates are available at: https://github.com/jeremymcrae/denovonear/blob/

master/denovonear/data/rates.txt). Then, the mutation rate of each functional class of point

mutations in gene was calculated by adding up point mutation rates in the longest transcript.

The rate of frameshift indels was presumed to be 1.1 times the nonsense mutation rate. The

expected number of variants in different gene sets were calculated by summing up the class-

specific variant rate in each gene in the gene set mutiplied by twice the number of patients

(and if the gene is located on the non-pseudoautosomal region of chromsome X, further

adjusted for female-to-male ratio [14]). The observed number of variants in each gene set and

case group was then compared with the baseline expectation using Poisson test.

In burden analysis, constrained genes were defined by pLI metrics [27]�0.5 which include a

total of 5451 GENCODE genes, and all remaining genes were treated as other genes. We used a

less stringent pLI threshold than previously suggested [27] for defining constrained genes, because

it captured more known haploinsufficient genes important for heart and diaphragm development.

Genes were also grouped by their expression levels in mouse developing diaphragm. Microarray

expression profile of mouse pleuroperitoneal folds at E11.5 was taken from a previous study [34].

Normalized gene expression levels were converted to rank percentiles with smaller values corre-

sponding to higher expression. Human orthologs of mouse genes were identified using annota-

tions from MGI database (http://www.informatics.jax.org/). When a human gene mapped to

multiple mouse genes, the highest expression level was assigned to the human gene.

RNA sequencing

Fibroblasts were obtained from diaphragm biopies at the time of diaphragm repair from 36

CDH neonatal cases most of whom carried damaging de novo variants, including three cases

carrying MYRF variants (p.G81Wfs�45, V679A, and R695H). Cells were cultured in Dulbec-

co’s Modified Eagle’s Medium supplemented with 10% heat-inactivated fetal bovine serum

and 1x Antibiotic/antimycotic (Gibco; Life Technologies), following standard conditions.

Cells were cultured in parallel in successive passes until optimal confluence was reached, and

were collected with 2.5% Trypsin (Gibco; Life Technologies) and harvested by centrifugation 5

minutes at 1200rpm. Total RNA was extracted from the cell pellet of each subject using RNeasy

LipidTissue mini Kit (QIAGEN) according to manufacturer’s protocol. The quality and quan-

tity of RNA were assayed using a Qubit RNA Assay Kit in a Qubit 2.0 Fluorometer (Life Tech-

nologies) and RNA Nano 6000 Assays on a Bioanalyzer 2100 system (Agilent Technologies).

cDNA libraries were prepared with the TruSeq Stranded Total RNA Sample Preparation kit

(Illumina), following the manufacturer instructions. And the purified products were evaluated

with an Agilent Bioanalyzer (Agilent Technologies). The library was sequenced on Illumina

HiSeq 2000 platform in 100-bp paired-end reads.

RNA-seq data analysis

RNA-seq reads were mapped to the human reference genome (GRCh37) using STAR (version

2.5.2b) [72]. Gene expression levels were quantified as TPM from the output of FeatureCounts

(2015–05 version) [73]. Only protein coding genes were kept for analysis and genes with no

mapped reads in at least half of the samples were filter out. All sequenced samples had>20

million mapped read pairs with>90% mapping rate. Principle component (PC) analysis of

gene expression profile showed that five samples were separated from others on the first two

PC axes (S5 Fig). The outlier samples were likely due to different number of passages in cell

culture, and were removed from analysis.

Differential expressed genes (DEG) between cases with MYRF variants and others were

identified using DESeq2 package [41]. DEG were selected using following criteria: adjusted p-
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value < 0.5 and adjusted fold change > 0.5 or < -0.5. We noted that all three MYRF de novo
variant carriers were male. To avoid confounding effect of gender, DEG analysis was also per-

formed by comparing male samples with or without MYRF variants. The full DEG list is given

in S4 Data.

To evaluate the consequence of MYRF damaging variants on patients’ transcriptome, we

tested if putative MYRF target genes were systematically down-regulated in the fibroblast cells

with MYRF variants using gene set enrichment analysis (GSEA). The MYRF target genes as

oligodendrocyte-specific genes that had at least one MYRF ChIP-seq binding peaks with

100kb of transcription start site [40]. We then identified corresponding human orthologs

using biomaRt package [74]. A total of 74 human genes were defined as putative target genes

for GSEA.

Quantitative PCR

We selected six genes from differentially expressed genes between MYRF mutation carriers

and other cases, including four down-regulated (GATA4, DBNDD2, MYO1D and NFASC) and

two up-regulated (H3F3C and SEMA3A) in MYRF mutant cells. First-strand cDNA was syn-

thesized from the total RNA (500ng~1 µg) using the RNA to cDNA EcoDry Premix (Random

Hexamers) kit (TaKaRa) according to manufacturer’s instructions. Primers for the selected

genes (S6 Table) were synthesized by IdtDNA. All qPCR reactions were performed in a total of

10 µl volume, comprising 5 µl 2x SYBR Green I Master Mix (Promega), 1 µl 10nM of each

primer and 2 µl of 1:20 diluted cDNA in 96-well plates using CFX Connect Real-Time PCR

Detection System (Bio-Rad). All reactions were performed in triplicate and the conditions

were 5 minutes at 95˚C, then 40 cycles of 95˚C at 15 seconds and 60˚C at 30 seconds. The rela-

tive expression levels were calculated using the standard curve method relative to the β-actin

housekeeping gene. Five-serial 4-fold dilutions of cDNA samples were used to construct the

standard curves for each primer.

Cross-disorder genetic overlap

To assess the genetic overlap with other developmental disorders and especially CHD, we

tested if the de novo damaging variants in CDH cases were enriched in known and putative

CHD and DD genes. DD genes were extracted from DDG2P database [75] (accessed on Jan

11, 2018) and filtered to keep “allelic requirement” as monoallelic, X-linked dominant or

hemizygous, and required “organ specificity list” to include brain, heart or not specific to any

organ. A total 508 DD genes were identified, including 460 confirmed DD genes. CHD genes

were collected based on a recent exome study of 2645 trios [29]. CHD genes included high

heart expressed genes (HHE; ranked at top 25%) or known human CHD genes that were

affected by more than one damaging de novo variants (LGD or D-mis defined by meta-SVM

[76] as the original publication on CHD [29]) or constrained (pLI�0.5) HHE genes affected

by only one damaing variants from the same study. A total 200 CHD genes were identified, 57

of which overlapped with DD genes.

To assess if the exome-wide de novo damaging variants in CDH were enriched in CHD and

DD genes, simulations were done to randomly place variants to the coding regions in a way

that keeps the number of variants, tri-nucleotide context, functional effect, and deleteriouness

prediction the same as that of the observed data [77]. Here the coding region was defined as

coding sequences and canonical splice sites of all GENCODE v19 coding genes. For damaging

mutations identified from WES data, the coding regions were restricted to the regions that

have at>10X coverage in least 80% samples. Empirical p-value was calculated as the chance

when there were more simulated damaging variants than observed in the given gene set. We

De novo variants in congenital diaphragmatic hernia

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007822 December 10, 2018 18 / 26

https://doi.org/10.1371/journal.pgen.1007822


ran 50,000 simulations to evaluate the significance. And the expected number of variants in a

gene set was the average number of randomly generated variants in a gene set over all

simulations.

Functional enrichment map

To evaluate the functional convergence of genes affected by damaging variants, we extracted

89 genes that included 86 constrained genes (pLI�0.5), two known candidates for CDH

(GATA6, WT1), and a known haploinsufficient gene (KDM5B). Gene sets were derived from

Gene Ontology Biological Process (GO-BP, accessed Feb 1st, 2018). The GO-BO categories

that were statistically over-represented in the gene list (FDR<0.1) were identified using hyper-

geometric test implemented by BINGO [78]. Terms annotating more than 750 or less than 25

genes were discarded, because large gene-sets usually represent broad categories without spe-

cific biological meaning. Small gene sets on the other hand are not likely to produce statisti-

cally significant results.

Enriched gene sets were graphically visualized as a network, in which each gene set is a

node and edges represent overlap between sets. The Cytoscape software [79] and Enrichment-

Map plugin [80] were used to construct the network. The color gradient of nodes reflects the

enrichment p-values. Node size is proportional to the number of genes in the gene set. Edge

thickness is proportional to the similarity score between gene sets which is defined by the aver-

age of Jaccard coefficient and overlap coefficient [80]. Enriched gene sets with highly overlap-

ping genes (S6 Data) were grouped together and annotated manually.

Supporting information

S1 Fig. Depth of coverage. Scatter plot and marginal histograms for mean depth and percent-

ages of targeted regions with at least 10 or 15 reads are shown for whole-exome sequencing (a)

and whole-genome sequening samples (b).

(PDF)

S2 Fig. Distribution of de novo coding variants per proband. Distribution of number of de

novo coding variants per proband in whole-exome (a and b) and whole-genome sequenced

trios (c).

(PDF)

S2 Fig. Multiple sequence alignment of the DBD domain (a) and ICA domain (b) of the

MYRF protein.

(PDF)

S4 Fig. The predicted effects of de novo missense variants MYRF 3D structure. The predi-

cated local 3D structures of wild and mutant type proteins are shown for F387S (a), Q403H

(b), G435R (c), L479R (d), and R695H (e). V679A cannot be modeled due to lack of homo-

logues template.

(PDF)

S5 Fig. Principle component analysis of RNA-seq samples before (a) and after (b) removing

outliers.

(PDF)

S6 Fig. (Related to Fig1b) The impact of de novo missense variants on the patient tran-

scriptomes. (a) The distribution of mean z-scores of gene expression. (b) Gene set enrichment

analysis of MYRF target genes.

(PDF)
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S7 Fig. qPCR validation of selected genes differentially expressed between MYRF mutation

carriers and other cases. The relative expression levels of six selected genes from qPCR (a) are

compared with the TPM metrics of RNAseq (b).

(PDF)

S8 Fig. Expression trajectories of MYRF and GATA4 in mouse developing diaphragm and

lung.

(PDF)

S9 Fig. Enrichment of damaging variants in DD/CHD genes that have not been implicated

in CDH. (a) Comparing the observed vs expected number of damaging variants on DD/CHD

genes after excluding known CDH candidate genes. (b) The same as (a) but using all con-

strained genes as the background.

(PDF)

S1 Data. Demographic and clinical characteristics of cases.
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S2 Data. Full list of de novo coding variants.
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S3 Data. Putative MYRF target genes.

(XLSX)

S4 Data. Differentially expressed genes between MYRF variant carriers and other cases.

(XLSX)

S5 Data. Gene sets used in cross-disorder analysis.
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S6 Data. (Related to Fig4) Enriched Gene Ontology terms in the functional map.
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S1 Table. Sequencing summary.

(PDF)

S2 Table. (Related to Table 2) Burden of de novo variants in different sub-groups of

patients.

(PDF)

S3 Table. Genes affected by multiple de novo functional variants.

(PDF)

S4 Table. Pathogenicity prediction of MYRF de novo missense variants.

(PDF)
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(PDF)

S6 Table. Primers for qPCR validation of selected differentially expressed genes.

(PDF)

S7 Table. (Related to Fig 2C) Clinical information of cases carrying damaging variants in

DD/CHD genes.

(PDF)
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