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ABSTRACT: Cancer and developmental disorders (DDs)
share dysregulated cellular processes such as proliferation
and differentiation. There are well-known genes impli-
cated in both in cancer and DDs. In this study, we aim
to quantify this genetic connection using publicly avail-
able data. We found that among DD patients, germline
damaging de novo variants are more enriched in cancer
driver genes than non-drivers. We estimate that cancer
driver genes comprise about a third of DD risk genes.
Additionally, de novo likely-gene-disrupting variants are
more enriched in tumor suppressors, and about 40% of
implicated de novo damaging missense variants are located
in cancer somatic mutation hotspots, indicating that many
genes have a similar mode of action in cancer and DDs.
Our results suggest that we can view tumors as natural lab-
oratories for assessing the deleterious effects of mutations
that are applicable to germline variants and identification
of causal genes and variants in DDs.
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Introduction

De novo or rare functional variants with large effect sizes are
major contributors [Neale et al., 2012] to developmental disorders
(DDs), such as developmental delay, autism, intellectual disability,
and epilepsy [Epi et al., 2013; De Rubeis et al., 2014; Gilissen et al.,
2014; Tossifov et al., 2014; Deciphering Developmental Disorders,
2015]. However, most of DD risk genes are still unknown: there
are about 100-200 known candidate risk genes [Deciphering Devel-
opmental Disorders, Iossifov et al., 2014; 2015], yet the estimated
number of risk genes that contribute to DDs is about 1,000 [Iossifov
et al,, 2014]. Additionally, it is challenging to clinically interpret de
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novo or rare variants, especially missense variants, even in known
risk genes.

Cancer and DDs have common dysregulated cellular processes,
such as proliferation, growth, and differentiation [Waite & Eng,
2003; Schubbert et al., 2007; Parikshak et al., 2013]. There are
well-known genes and pathways implicated in both, with recur-
rent somatic mutations in cancer and highly penetrant germline
de novo variants in DDs. Classic examples include PTEN (MIM#
601728), a negative regulator in ALK pathway implicated in autism
[O’Roak et al., 2012] and many types of cancer [Li et al., 1997],
and PTPN11 (MIM# 176876), a phosphatase in RAS/MAPK signal-
ing pathway implicated in both Noonan syndrome and leukemia
[Tartaglia et al., 2003]. Recent large-scale genomic studies of can-
cer [Cancer Genome Atlas Research, Gao et al., 2013; Weinstein
et al,, 2013] and DDs [de Ligt et al., 2012; Epi et al., 2013; De
Rubeis et al., 2014; Deciphering Developmental Disorders, Rauch
et al., 2012; Gilissen et al., 2014; Hamdan et al., 2014; lossifov
et al., 2014; 2015] revealed a substantial number of genes impli-
cated in both classes of diseases. There was reported increased
burden of rare nonsynonymous variants in proto-oncogenes in
autism patients [Darbro et al., 2016]. Some of these genes share
similar modes of action through cancer somatic mutations and
DD germline de novo variants [Ronan et al., 2013]. For exam-
ple, PTPN11 is known to harbor gain-of-function mutations that
make it constitutively active in both cancer and Noonan syndrome
patients; EP300 (MIM# 602700), a tumor suppressor, has a large
fraction of likely-gene-disrupting (LGD) mutations that mostly
likely lead to loss-of-function in both diseases [Roelfsema et al.,
2005].

In this study, we aim to quantify the genetic connection be-
tween cancer and DDs, and investigate the feasibility of utiliz-
ing cancer genomics data to help improve risk gene and vari-
ant discovery in genetic studies of DDs. Driver genes are much
more frequently mutated in cancer, and with ongoing interna-
tional efforts in cancer precision medicine, there is an acceler-
ated accumulation of cancer somatic mutation data. Such data will
provide an unprecedented opportunity to study empirical func-
tional consequences of mutations at virtually every base in cancer
driver genes. Elucidating such a connection could lead to a bet-
ter understanding of molecular mechanisms of both cancer and
DDs.

We compiled data sets of de novo variants from recently published
studies on DDs [De Rubeis et al., 2014; Deciphering Developmen-
tal Disorders, Epi et al., 2013; Gilissen et al., 2014; Iossifov et al.,
2014; Robinson et al., 2014; 2015], including autism, intellectual
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disabilities, epilepsy, and developmental delays. We also assembled a
large number of candidate cancer driver genes from various sources,
including Cancer Census, The Cancer Genome Atlas (TCGA), and
The Candidate Cancer Gene Database (CCGD) [Cerami et al., 2012;
Gao et al., 2013; Abbott et al., 2015; Forbes et al., 2015]. We com-
pared the burden of de novo variants in candidate cancer driver
genes and non-driver genes among DD cases. We then estimated
the fraction of DD risk genes that are also cancer drivers. Finally, we
investigated whether germline de novo variants and cancer somatic
mutations in this set of overlapping genes have similar modes of
action.

Materials and Methods

Candidate Cancer Driver Genes

The candidate cancer driver genes list is are comprised of census
genes from COSMIC [Forbes et al., 2015], significantly mutated
genes from TCGA studies curated by cBioPortal [Cerami et al.,
2012] and candidate genes from forward genetic screens in mice
in The Candidate Cancer Gene Database (CCGD) [Abbott et al.,
2015] (Supp. Fig. S1). For cBioPortal data, we included genes with
MutSigCV g-value less than 0.1 in individual TCGA studies as sig-
nificantly mutated genes. We excluded results from the Adrenocor-
tical Carcinoma and Pancreatic Adenocarcinoma datasets because
while these two cancer datasets have a moderate number of sam-
ples, many of these genes have g-values less than 0.1. For CCGD
data, we only considered the genes with relative rank A [Abbott
et al, 2015]. We further filtered these CCGD genes based on muta-
tion data in TCGA. Specifically, we counted the variants of various
functional categories (LGD, missense, silent) reported in TCGA
[Weinstein et al., 2013], and tested whether there is significant ex-
cess (P < 0.05) of missense or LGD mutations compared with silent
mutations based on germline gene-specific background mutation
rates [Samocha et al., 2014]. We note that the background somatic
mutation rate is affected by various processes [Alexandrov et al.,
2013; Roberts et al., 2013] that are different to germline mutations.
However, the usage of germline background in this study is justified
by the observation that there is a very strong correlation between
observed ratio of missense/silent (or LGD/silent) somatic muta-
tions and ratio of missense/silent (or LGD/silent) germline back-
ground mutation rate among non-candidate cancer driver genes
(correlation coefficient = 0.46; Supp. Fig. S2). All other genes not
included in cancer driver genes are classified as non-cancer driver
genes.

Germline de novo Mutations of DDs

We compiled germline de novo variants from 5,542 DD cases in
recent published studies, including 3,962 cases with autism spec-
trum disorder [De Rubeis et al., 2014; lossifov et al., 2014], 1,133
cases from Deciphering Developmental Disorders study [Decipher-
ing Developmental Disorders, 2015], 191 cases with epileptic en-
cephalopathies [Epi et al., 2013], and 264 cases with intellectual
disability [de Ligt et al., 2012; Rauch et al., 2012; Gilissen et al.,
2014; Hamdan et al., 2014]. We re-annotated these mutations us-
ing ANNOVAR [Wang, Li, & Hakonarson, 2010] software to have
complete gene annotation as well as function annotation. The func-
tional consequence of missense mutations is predicted in silico by
meta-SVM. In this study, we only consider mutations in the exonic
regions.

Burden Test and Estimation of Number of Causative de
novo Mutations

Burden test between case and control

Within gene sets, we counted the number of mutations inside the
gene set of different functional categories (LGD, missense, silent)
for both cases and controls. We assumed that de novo variants are
sequences of individual Bernoulli trials and we used the portion
of case trios as the success probability to calculate the two-side
binomial distribution P value as well as fold enrichment.

Burden comparison between cancer and non-cancer
drivers

We counted the number of de novo variants in candidate cancer
driver genes and non-cancer drivers of different functional cat-
egories (LGD, missense, silent) for both cases and controls. We
used two-side Fisher’s exact test to test the null hypothesis that the
case/control burden of various categories is the same among cancer
driver genes and non-cancer driver genes.

Estimation of number of causative de novo mutations and
class vulnerability [lossifov et al,, 2014] in gene sets

In a group of genes (e.g., cancer drivers), there are L, LGD (or
D-mis) mutations from n, cases and L, LGD (or D-mis) mutations
from 7, controls, we estimate the number of causative variants C

by:

L,xn
C-1,- 2 1

ny

and class vulnerability V by:

C
V= _—

1

Using the L, and L, as the Poisson distribution rate to simu-
late 10,000 trials, we can calculate the 95% confident intervals of
causative variants and class vulnerability.

Estimation of percentage of causative mutations in cancer
driver genes

We first counted the number of de novo LGD (or D-mis) variants
in all genes and in candidate cancer driver genes for both cases and
controls, then we used the variant counts as the Poisson distribution
rate to simulate 10,000 trials. Dividing the number of simulated
causative variants in cancer drives genes by the simulated mutations
in all genes, we obtain the expectation as well as a 95% confident
interval.

Infer Candidate Risk Genes of DDs

TADA (transmission and de novo association) [He et al., 2013;
De Rubeis et al., 2014] is a Bayesian method for identification of
risk genes using rare or de novo variants. We tallied the occurrence
of de novo variants in two categories: LGD and D-mis. We used
gene-specific mutation rate [Samocha et al., 2014] as the parameter
for the Poisson distribution and calculated its corresponding false
discovery rate (FDR) using other default parameters.
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DD risk genes that overlap with candidate cancer driver
genes

We defined DD candidate risk genes using FDR calculated by
TADA. With each FDR threshold, we obtained the number of can-
didate DD risk genes (N) and the number N. of such genes that
are also candidate cancer drivers. We estimated the number (F) of
false positive DD risk genes by FDR definition: F = N« F DR. To
estimate the fraction (f) of true DD risk genes that overlap with
candidate cancer driver genes, we assumed false positive DD risk
genes overlap with candidate cancer driver genes just by chance,
which is determined by background germline de novo mutation
rate. In most TADA FDR bins (FDR < 0.5), the false positive risk
genes should have at least one damaging de novo variant (LGD or
D-mis). By calculating the sum of germline damaging mutation rate
in cancer driver genes divided by all genes, we determined that the
overlap rate by chance is r = 10%. Finally, for each TADA FDR bin,
the fraction of true DD risk genes that are also candidate cancer
driver genes was estimated by:

N, -F xr
I="NF

Hidden Markov Model to Infer Cancer Somatic Missense
Mutation Hotspots

We implemented a Hidden Markov Model (HMM) to predict so-
matic missense mutation hotspots in each candidate cancer driver
gene. We assume that the background somatic mutation rate is uni-
form across a given gene. For each transcript in the given gene,
we inspected the somatic missense mutations from COSMIC. We
counted all missense mutations at each given amino acid site, regard-
less of actually amino acid changes, to identify mutation hotspots.
We defined hotspots in two ways: (1) highly recurrent mutation
sites and (2) sites with non-background states prediction by HMM.
Recurrent mutated positions were defined as having more than 3.5
median-absolute-deviation number of mutations. After excluding
recurrent sites, we took a sliding window of size 8 and summed
the number of mutations for each position to reduce the fluctua-
tion of mutations in a neighborhood region. We used the smoothed
position-specific mutation counts as the input to a HMM with
Poisson emission probability and three hidden states, including: (a)
the “background” state, (b) possible mutation hotspot state, and
(c) probable mutation hotspot state. We used germline mutation
background to estimate the fraction of missense mutations that are
drivers in each gene. This is based on the observation that, among
non-cancer driver genes, the ratio of reported missense/silent so-
matic mutations is close to gene-specific background mutation rate
estimated by Samocha et al. [2014] (regression slope = 0.97 and
intercept close to zero; Supp. Fig. S2.). We simulated the missense
mutation counts (S;) and silent mutation counts (S,) in each gene
using the corresponding recorded COSMIC data (Cy, G, ) as the Pois-
son distribution rate. With the missense/silent ratio from germline
de novo background (R, ), we estimated the mean and 95% con-
fidence interval of the fraction of missense mutations (f) that are
drivers in each gene by:

81*52*R1
f= S

We used the upper bound of 95% CI as the maximum allowed (M)
percentage of missense drivers from HMM. To obtain reasonable
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initial values for HMM parameters, we then calculated the expected
number of driver missense mutations per position (T) by:

T_ Cix(1-f)
L

where L is the total transcript length. We set the lambda (mean
of a Poisson distribution) for the background state to be at least
T. To restrict the number of transitions between background and
hotspot states, we took the average of the diagonal of the transition
matrix of the Baum—Welsh result with 0.99 if the corresponding
transition matrix elements were smaller than 0.99 in each iteration.
After convergence, we used the Viterbi algorithm to find the most
probable state path and forward—background algorithm to calculate
posterior marginal probabilities of hidden states for each position.
To identify the hotspots, we took positions with the non-background
states as the hotspots, with exception that if the fraction of somatic
missense mutations in those hotspots exceeded M, we ranked those
positions by their marginal probability of being background states
(increasingly), and included such positions until the fraction of
missense mutations in hotspots reached M.

Results

Burden of Germline de novo Variants in DD Patients among
Candidate Cancer Driver Genes

To investigate the contribution of cancer driver genes to DDs, we
compiled a large dataset of 6,294 germline de novo coding variants
from 5,542 DD cases drawn from recent published studies, including
3,953 cases with autism spectrum disorder [De Rubeis et al., 2014;
Tossifov etal., 2014], 1,133 cases with various DDs from Deciphering
Developmental Disorders study [Deciphering Developmental Dis-
orders, 2015], 192 cases with epileptic encephalopathies [Epi et al.,
2013], and 264 cases with intellectual disability [de Ligt et al., 2012;
Rauch et al., 2012; Gilissen et al., 2014; Hamdan et al., 2014] (Supp.
Tables S1 and S2). Aggregating various DDs with shared but distinct
genetic risk architectures can yield additional findings in risk genes
[Deciphering Developmental Disorders, 2015; Homsy et al., 2015;
Retterer et al., 2015]. We re-annotated these variants using AN-
NOVAR software [Wang et al., 2010], and predicted the functional
consequences of missense variants in silico using meta-SVM [Dong
et al., 2015]. The following analyses are focused on LGD (which
includes stopgain, stoploss, frameshifting, and splicing variants)
or predicted-damaging missense (D-mis, predicted by meta-SVM)
variants. We used 1,911 parents-unaffected sibling trios from the
Simons Simplex Collection (SSC) as controls [Iossifov et al., 2014].
The overall rate of silent de novo variants is similar between cases
and controls (0.25 per subject; Supp. Table S3). To include a broad
set of cancer driver genes [Cheng et al., 2015], we obtained 568
cancer census genes from COSMIC [Forbes et al., 2015], 773 genes
with MutSigCV [Lawrence et al., 2013] g-value less than 0.1 from
individual The Cancer Genome Atlas (TCGA) studies curated by
cBioPortal [cBioPortal, Gao et al., 2013; 2015], and 325 candidate
driver genes from forward genetic screens in mice by The Candidate
Cancer Gene Database (CCGD) [Abbott et al., 2015] (see Materials
and Methods section). In total, we compiled a list of 1,481 can-
didate cancer driver genes (Supp. Table S4 and Supp. Fig. S1), all
other genes not classified as cancer driver genes were considered as
non-cancer driver genes.

Among all candidate cancer driver genes, there is significant en-
richment of LGD or D-mis germline de novo variants in DD cases
compared with controls (Supp. Table S5(a)), and such enrichment



Table 1. Burden of Germline de novo Variants in Candidate Cancer Driver Genes (N=1,481) Comparing to Non-Driver Genes (N = 17,396)

Number of de novo variants in 5542 DD cases

Number of de novo variants in 1911 Controls

Fisher’s exact

Type of de novo

variants Cancer driver genes ~ Non-cancer driver genes ~ Cancer driver genes ~ Non-cancer driver genes Odds ratio Pvalue
LGD 233 671 24 153 2.2 3.3E-04
Missense 518 3412 132 1002 1.2 0.19
D-mis 190 766 26 191 1.8 0.006
LGD or D-mis 423 1437 50 344 2 4.5E-06
Silent 146 1238 52 427 1 0.86

The null hypothesis in Fisher’s exact test is that the fraction of germline de novo variants of each type located in cancer driver genes is the same between DD cases and controls.

Table2. Number of Developmental Disorder (DD) Candidate Risk Genes at Different FDR Values Estimated by TADA, and Corresponding

Overlapping Cancer Driver Genes

Number of candidate Estimated number of

Number of candidate risk

Estimated percentage of

Estimated number of true risk cancer drivers among true

FDR by TADA risk genes true risk genes genes that are cancer drivers genes that are cancer drivers risk genes
<0.1 134 120.6 56 54.6 45%
=0.2 186 148.8 66 62.2 41%
<0.3 269 188.3 74 65.7 34%
<0.4 421 252.6 92 74.6 29%
=<0.5 649 324.4 124 90.5 27%

For each FDR threshold, number of true risk genes is estimated by FDR definition.

is significant in both autism and other types of DD (Supp. Table
S5(b)). Moreover, among DD cases, candidate cancer driver genes
show significantly higher enrichment of germline de novo vari-
ants than non-drivers (Table 1; odds ratio = 2.0, P value = 4.5e-6).
Such enrichment cannot simply be explained by known constrained
genes in cancer driver genes, as we observed that among constrained
genes [Lek et al., 2015], there is still a significantly greater burden
in drivers than in non-drivers (odds ratio = 2.1; Supp. Table S5(c)).
Based on fold enrichment of de novo variants in cases compared
to controls, we estimate that there are about 391 causative LGD
variants in total, of which 163 are in candidate cancer driver genes
(42%), and that there are about 327 causative D-mis variants in
total, of which 114 are located in cancer driver genes (35%). There-
fore, about 38% (95% confidence interval (CI): [29%, 51%]) of all
potentially causative damaging (LGD or D-mis) de novo variants
observed in these DD cases are located in candidate cancer drivers.

Among the candidate cancer drivers that harbor damaging de
novo variants in DD cases, several pathways are enriched (Supp.
Table S6), including transcriptional regulation (e.g., lysine degra-
dation), core developmental pathways (e.g., Wnt and Hippo signal-
ing), pathways related to cell junctions and adhesion, and ubiquitin
mediated proteolysis.

Cancer Driver Genes Comprise about a Third of DD Risk
Genes

To identify a broad set of candidate risk genes of development
disorders, we applied TADA [He et al., 2013; De Rubeis et al., 2014],
a probabilistic method for identifying risk genes based on de novo
or rare variants. We used only de novo LGD and D-mis mutations in
this analysis and gene-specific background mutation rate [Samocha
et al., 2014; Ware, 2015]. We ranked all genes by FDR, defined DD
candidate risk genes using increasing thresholds of 10% bins, and
then calculated the percentage of true DD risk genes that overlap
with cancer driver genes (Table 2). The estimated overlap percentage
is 45% at FDR 0.1; the ratio decreases at larger FDR values but is
still significantly greater than what is expected by chance at FDR of

0.5. Overall, we estimate that cancer drivers comprise more than a
third of risk genes contributing to developmental diseases.

Germline de novo Variants Disrupt DD Risk Genes Through
Similar Modes of Action as Somatic Mutations in Cancer
Drivers

Cancer driver genes are generally categorized as tumor suppres-
sors or oncogenes, with the exception of genes that play either role
in different cancer types [Lobry et al., 2011]. The molecular conse-
quence of a driver somatic mutation is usually loss-of-function in a
tumor suppressor gene and gain-of-function in an oncogene. There
are a number of known DD risk genes disrupted by germline vari-
ants via similar modes of action as cancer driver genes disrupted by
somatic mutations. For example, gain-of-function germline vari-
ants in SOSI (MIM# 182530) and PTPNI1I genes are implicated
in Noonan syndrome [Tartaglia et al., 2001]. Both genes are also
oncogenes with gain-of-function somatic mutations in leukemia
[Tartaglia et al., 2003]. To quantify the similarity of modes of action
between cancer and DDs in individual genes and pathways, we inves-
tigated the patterns of cancer somatic mutations and DD germline
de novo variants. We made two assumptions: (a) loss-of-function
mutations include both truncating mutations (LGD, including stop-
gain, stoploss, splicing, and frameshifting), and a subset of missense
mutations. Tumor suppressors tend to harbor both types of mu-
tations, generally with a large fraction of LGD mutations [Davoli
et al., 2013]; (b) gain-of-function mutations are mostly composed
of missense mutations. We note that genes with dominant negative
mutations are often exceptions.

We reasoned that tumor suppressors are likely haploinsufficient
[Davoli etal.,2013] as DD risk genes. To test that, we identified likely
tumor suppressor genes and likely non-suppressor genes based on
the fraction of LGD mutations among all somatic SNVs and in-
dels in a given gene, across all cancers. Specifically, we grouped
the candidate cancer driver genes into four bins using data from
COSMIC, with fractions of LGD mutations at 0%—5%, 5%-10%,
10%-15%, and =15%, respectively. Among these bins, the genes in
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Figure 1. Enrichmentof germline LGD de novo variants in DD patients
and controls among candidate cancer driver genes and non-cancer
driver genes. Cancer driver genes are grouped based on fraction of
LGD somatic mutations among all reported point mutations or small
indels in COSMIC. The group with >15% of LGD mutations are likely
tumor suppressors. Enrichment values were estimated by comparing
observed number of germline de novo LGD variants to expectation from
background mutation rate [Samocha et al., 2014] in cases or controls.
Red bars represent DD cases, blue bars represent controls, error bars
represent95% confidentinterval. Pvalues (sx*x indicates Pvalue <0.001)
were calculated using Poisson tests with expected value estimated from
background mutation rate.

the 0%—5% bin are likely non-suppressors, and the ones in the 15%
or larger bin are likely tumor suppressor genes. This tier classifi-
cation is consistent with an independent study of predicted tumor
suppressor genes [Davoli et al., 2013] using TCGA data. More than
half of the likely tumor suppressor genes overlap with the predicted
confident tumor suppressor genes; there is almost no overlap of
likely non-suppressor with predicted confident tumor suppressor
genes [Davoli et al., 2013] (Supp. Fig. S3). Compared with the num-
ber of germline LGD de novo variants expected from background
mutation rate [Samocha et al., 2014; Ware, 2015] in DD cases, we
observed a 2.4 enrichment in likely non-suppressor genes (Supp. Ta-
ble S7), which, as expected, is below the overall enrichment in cancer
driver genes (3.3x; Supp. Table S5). On the contrary, we observed
more than 10-fold enrichment of LGD variants in likely-tumor sup-
pressor genes than expected (Fig. 1; Supp. Table S7), representing a

&N D-mis % Missense

100%
80%
60%
A6 -
20% é%%ég
B Non-drivers Drivers Hotspots in

drivers

Figure 2. Class vulnerability of germline de novo missense variants in
differentgroups of genes. Class vulnerability is defined as the probability
of a variant being associated with the disease [lossifov et al., 2014]. D-
mis is defined as missense predicted to be damaging by meta-SVM
[Dong et al., 2015]. Pvalues (x*x* indicates Pvalue < 0.001; s indicates
P value < 0.01) were calculated using Binomial tests described in the
Materials and Methods section.

4.2x greater enrichment than in likely non-suppressors. This in-
dicates that tumor suppressor genes implicated in DD patients
through germline de novo variants often confer disease risk via
loss of function.

Functional missense mutations, whether gain or loss of function,
disrupt cellular processes in very specific ways. For example, these
mutations can cause (gain or loss of) enzymatic activity or (loss
of) regulation of protein stability/activity, or affect interaction with
other proteins. Therefore, functional missense mutations tend to
form clusters in specific regions. We denote these clusters as cancer
mutation hotspots. We found that for amino acid positions where
there were at least three reported somatic missense mutations in
COSMIC, there are 34 de novo missense variants in cases and just
1 in controls (fold enrichment = 12, P value = 6.9e-4; Supp. Table
S8). There was a consistent trend among de novo D-mis variants
at positions with 1 or 2 reported somatic missense mutations (fold
enrichment = 3.1, Pvalue = 0.028; Supp. Table S8). Several methods
have been developed to find mutation hotspots for the purpose of
finding cancer driver genes with a high accuracy [Chang et al., 2015;
Yang et al., 2015]. Among the reported cancer mutation hotspots,
we observed a similar trend of enriched de novo mutations in DD
cases (Supp. Table S9). To reach optimal power for this study with
a balance of accuracy and sensitivity, we implemented a HMM to
predict these hotspots (Materials and Methods section) in genes
that are already implicated as candidate drivers. We collected all

Table 3. Enrichment of Germline de novo Missense Variants in DD Cases Located in Cancer Somatic Missense Hotspots

(a) There are significantly more germline de novo missense variants located in hotspots in DD case comparing to controls.

Variant type in hotspots Case Control Fold enrichment Pvalue
Missense 95 11 3 0.00013
D-mis 47 1 16.2 1.8e-5

(b) Among all germline de novo missense variants in cancer driver genes, the ones in DD cases are more likely to be located at cancer somatic missense mutation hotspots

than the ones in controls.

Case Control
Variant type in hotspots Hotpots Not hotspots Hotspots Not hotspots Odds ratio Pvalue
Missense 95 391 11 102 2.3 0.01
D-mis 47 138 1 23 7.8 0.02
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somatic missense mutations from COSMIC for each gene and
applied our HMM-based methods to detect missense mutation
hotspots in all candidate cancer driver genes (Supp. Table S10).
Comparing DD cases with controls, we observed a 16x fold en-
richment (P value = 1.8e-5) of germline de novo D-mis variants
in cancer mutation hotspots (Table 3; Supp. Tables S11 and S12),
which indicates that almost all such mutations contribute to DDs
and corresponds to a class vulnerability value of 90% [Iossifov et al.,
2014], much greater than D-mis variants (about 25%) in non-cancer
drivers (Fig. 2). Based on fold enrichment, the estimated number of
DD-causative de novo missense variants among all candidate cancer
drivers is about 135, and the estimated number of such variants in
cancer somatic mutation hotspots is 67. This suggests that a large
portion (about 50%) of causative de novo missense variants in DD
cases among cancer driver genes have similar modes of action as
cancer somatic mutations.

Figure 3 shows a few representative genes. EP300, a known tumor
suppressor, has one D-mis de novo variant at a cancer mutation
hotspot in one DD patient (Fig. 3A), consistent with its implicated
role through loss of function with other five LGD de novo variants
in DD data sets. ARID2 (MIM# 609539) is another tumor sup-
pressor and part of SWI/SNF chromatin remodeling complex. One
autism patient had a germline de novo missense variant in ARID2
at a somatic mutation hotspot (Fig. 3B). DDX3X (MIM# 300160),
a tumor suppressor implicated in intellectual disability [Decipher-
ing Developmental Disorders, 2015], has three missense de novo
variants in our compiled DD data sets and all located in cancer
hotspots (Fig. 3C). MAP2K1 (MIM# 176872), a proto-oncogene,
has a missense de novo variant located in a cancer hotspot (Fig. 3D)
in an autism case, suggesting that the variant plays a similar role as
gain-of-function mutations implicated in syndromes [Rodriguez-
Viciana et al., 2006] with ASD features. PPP2RIA (MIM# 605983),
a recently discovered DD risk gene [Deciphering Developmental
Disorders, 2015], harbors three missense de novo variants in two
cancer hotspots (Fig. 3E). PPP2R1A is likely an oncogene in ovarian
clear cell carcinoma [Jones et al., 2010], consistent with its gain of
function roles in both cancer and DDs. CNOT3 (MIM# 604910),
a tumor suppressor gene [De Keersmaecker et al., 2013], has two
de novo LGD variants and two de novo D-mis variants, one of
which is located in a mutation hotspot (Fig. 3F), indicating it is a
potential DD risk gene. Not all driver genes have similar mode of
action. CTNNBI (MIM# 116806), a central player in Wnt signal-
ing, is a proto-oncogene in various cancers [Morin, 1999]. It has a
very small fraction (0.5%) of LGD somatic mutations in COSMIC,
and most missense somatic mutations disrupt the phosphorylation
sites at the N-terminal end that are required for phosphorylation-
dependent degradation. In contrast to somatic mutations in cancer,
it is usually haploinsufficient and harbors LGD variants in patients
with neurodevelopmental syndromes [Tucci et al., 2014]. In the DD
data sets, we compiled there are seven LGD de novo variants, con-
sistent with a haploinsufficiency mechanism. In addition, there is
a missense variant in an autism case. This missense variant is not
located in any somatic mutation hotspot (Fig. 3G), and is therefore
unlikely to cause gain-of-function in CTNNBI. This is consistent
with the notion that, this variant is either implicated in autism via
loss of function similar to other LGD variants, or not associated
with the disease. SMARCA4 (MIM# 603254), a tumor suppressor
gene [Medina et al., 2008; Vandeweyer et al., 2014], harbors three
deleterious missense de novo mutations in the DD cases, none of
which is located in cancer mutation hotspots (Fig. 3H). This is
consistent with previous report that SMARCA4 may have gain of
function or dominant negative mutations in DDs [Tsurusaki et al.,
2012].

Discussion

Recent large-scale exome sequencing studies of DDs uncov-
ered many candidate risk genes and pathways through deleterious
germline de novo mutations. Many of these genes and pathways
have been previously implicated in cancer through somatic muta-
tions. Such genetic connection is reasonable because both classes
of diseases involve disruption of similar fundamental cellular pro-
cesses such as growth, proliferation, and differentiation. In this
study, we hypothesize that quantifying such connection between
DDs and cancer would lead to better understanding of how genes
are disrupted through mutations, and ultimately allow us to lever-
age the vast amount of caner mutation data to improve genetic
discovery in DD studies. Based on data from recently published
large-scale DD studies and cancer genomics resources, we found
that in DD patients there is a significantly greater burden of func-
tional de novo mutations in candidate cancer driver genes than
in non-cancer driver genes. And such enrichment trend holds in
both candidate tumor suppressors and oncogenes (Supp. Table S13
and Supp. Note). Specifically, about 38% of all potentially causative
damaging de novo mutations observed in these DD patients are
located in cancer drivers, and about 27%-45% of DD risk genes
are likely cancer driver genes. This indicates that we can priori-
tize known cancer driver genes to find candidate risk genes in DD
studies.

Additionally, we investigated whether driver somatic mutations in
cancer and causative germline de novo variants in DDs have similar
modes of action. We found that likely tumor suppressor genes, that
is, the ones with larger fraction of LGD mutations (=15%) reported
in COSMIC, have a significantly higher burden of germline de novo
LGD variants than likely non-suppressors (somatic LGD fraction
<5%) in DD patients, indicating that tumor suppressor genes often
exert DD risk through loss of function germline de novo variants
that disrupt molecular pathways in DD similar to the ones in cancer.
Several well-known oncogenes have gain-of-function germline de
novo missense variants that cause DDs. However, in general it re-
mains a challenge to infer whether a missense mutation causes gain
or loss of function of the gene. We therefore asked whether mis-
sense mutations in cancer (somatic) driver genes and DD germline
risk genes have similar modes of action. We hypothesized that in
both tumor suppressors and oncogenes, functional somatic mis-
sense mutations in driver genes occur in “hotspots” in a driver
gene. We indeed found a stronger enrichment of damaging de novo
missense variants located in these hotspots in DD patients than
in controls. Specifically, we estimated that about 48% of causative
de novo missense variants observed in DDs among cancer driver
genes are located in hotspots, indicating that missense mutations
also often have similar mode of action in cancer and DDs. This
ratio is likely an under-estimate, since the power of detecting muta-
tion hotspots is limited in many cancer driver genes due to relatively
small number of mutations. We observed this enrichment of hotspot
variants in both tumor suppressors and oncogenes. Strikingly, the
case—control comparison indicates that when located in cancer mu-
tation hotspots, most of the germline de novo missense mutations
in DD patients are implicated with the disease. This suggests that
in addition to using cancer driver genes to prioritize candidate risk
gene in DD studies, we can leverage cancer somatic mutation data to
improve functional assessment of germline rare or de novo variants
in these genes observed in DD patients, potentially improving both
risk gene discovery in genetic studies and genetic diagnosis in clinical
testing.

Based on the evidence of LGD variants in tumor suppressors
and D-mis variants located in cancer somatic mutation hotspots,
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we identified two new candidate risk genes for DDs. The first is
ARID2, which harbors a de novo D-mis variant in an autism pa-
tient. The variant is located at the second most recurrently mutated
position reported in COSMIC. A potential role of ARID2 in autism
is consistent with its recently implicated role in causing intellectual
disability with de novo LGD variants [Shang et al., 2015]. The sec-
ond gene is CNOT3, which harbors two de novo LGD variants and
two de novo D-mis variants in four different patients, including
one with autism and three with undiagnosed DDs [Deciphering
Developmental Disorders, 2015]. CNOT3 is a tumor suppressor
[De Keersmaecker et al., 2013] with a very large fraction (~24%)
[Forbes et al., 2015] of LGD mutations among all reported somatic
mutations, indicating that its suppressor role is through haploin-
sufficiency [Davoli et al., 2013]. One of the de novo D-mis variants
is located at the most recurrently mutated site reported in COS-
MIC. CNOT3 is a component of CCR4-NOT complex, which is
one of the major cellular mRNA deadenylases [Albert et al., 2000]
and has a broad role in post-transcriptional regulation of gene ex-
pression [Chen et al., 2002]. Post-transcriptional regulation of gene
expression has been implicated as a major pathway with neurode-
velopment disorders [De Rubeis et al., 2014]. This supports CNOT3
as a candidate risk gene of DDs. Future genetic and functional stud-
ies are required to confirm and validate these two candidate risk
genes.

In summary, our results suggest that we can view tumors as nat-
ural laboratories for assessing the deleterious effects of mutations
that are applicable to germline variants, which will enable us to
improve identification of causal genes and variants in DDs. Our
study is still limited by inadequate number of sequenced cancer
genomes in a few ways. First, we have limited power to detect muta-
tion hotspots in a substantial portion of cancer driver genes due to
a relatively small number of mutations, especially among the genes
that are mutated in a small fraction of cancer patients or cancer
types. This lack of power leads to lower sensitivity and specificity.
Recent works on clustering of somatic mutations in 3D [Kamburov
et al., 2015] or pooled homologous domains [Miller et al., 2015]
present promising directions to improve the power. Second, many
genes have a diverse set of functions, and clinically distinct types of
cancer [Hanahan & Weinberg, 2011; Muller & Vousden, 2013] or
diseases often involve disruption of different functions of the same
gene. Categorizing these disruptions as gain or loss of function is
overly simplification. Although our approach of detecting somatic
mutation hotspots does not rely on such simplified assumption, the
complexity does lead to decreased power in detection of somatic
mutation hotspots, and increased difficulty in utilization and in-
terpretation of the somatic mutation hotspots in DDs. Finally, we
do not have a complete catalog of cancer driver genes, and our
list of candidate cancer driver genes may contain a non-negligible
number of false positives. Ongoing international efforts in cancer
precision medicine are generating much larger cancer mutation data
sets. With prudent data sharing practices, this will improve cancer
driver genes and mutation hotspots detection in the future, and
make cancer data more valuable to genetic studies and diagnosis of
DDs.
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