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Abstract 

Missense variants have highly variable effects and effect size, which often makes it challenging 
to distinguish pathogenic and non-pathogenic variants and subsequently implicate new genes for 
disease association in studies of de novo and inherited rare variants. Importantly, missense 
variants can be the sole molecular mechanism for some genetic disorders, and so statistical 
approaches tailored for the analysis of missense variants are critical. Analysis of the clustering of 
missense variants is a promising approach which leverages the fact that missense variants in 
protein domains often have similar effects on function. Here we describe a new clustering 
analysis approach, AlphaCluster, a statistical method which quantifiably analyzes the spatial 
clustering of de novo variants by mapping missense residues onto the protein tertiary structure. 
We show that our approach can quantify the evidence supporting pathogenic missense variants 
and increase the power to detect clustering when compared to available genomic clustering 
tools. Using AlphaCluster, we identified genes newly implicated in autism spectrum disorder and 
neurodevelopmental disorders (NDD). We also apply AlphaCluster to protein complexes and 
detect an association between the gamma aminobutyric acid receptor complex (GABA-A 𝛼1𝛽2𝛾2 receptor). 
 

Introduction 

 
De novo genetic variants are a significant contributing factor to early onset human diseases and 
conditions that impact reproductive fitness, such as neurodevelopmental disorders (NDD)1,2, 
autism3–9 and congenital anomalies10–13. De novo variants which result in complete loss-of-
function (LoF) of the protein have traditionally been the main focus of de novo analyses. LoF 
variants often result in nonsense mediated decay and lead to haploinsufficiency, which can be 
severely biologically damaging and have consistent effect, making LoF variants both impactful 
and amendable to statistical analysis by aggregating LoF variants across most of a gene. On the 
other hand, missense variants, much more abundant than LoF variants, are variable in effect 



and effect size. It is difficult to differentiate between benign and deleterious missense variants, 
so gene-wide aggregation of missense variants frequently exhibits low signal-to-noise ratios for 
missense variants, leading to challenges implicating such genes with a large proportion of 
missense variants as disease associated. 
 
Nevertheless, missense variants are the main contributors to the disease mechanism or mode of 
action for certain genes. For example, a recent study of PTEN identified multiple molecular 
mechanisms underlying protein dysfunction, including several missense variants which appear to 
be dominant negative, resulting in less overall protein function than a monoallelic LoF variant14. 
Current methods to identify genes for which missense variants contribute to risk have focused 
on detecting and analyzing the enrichment of missense variants predicted to be damaging by 
computational algorithms, a means to increase the signal-to-noise ratio. For example, the TADA 
statistical method treats damaging missense variants (Dmis) as a particular class among others 
in a mixture model. However, the downside of this approach is that missense variants are 
essentially treated as less damaging LoF variants and nothing more, which misses an 
opportunity to leverage the unique aspects of location of missense variants as another important 
data element.  Recurrent and/or clustered missense variants can help elucidate the genetic 
causes of conditions for which association from LoF variants has not been shown but will require 
more than a simple re-application of LoF driven statistical tools. Indeed, there are fundamental 
differences between LoF and some missense variants, especially their relative effect sizes, 
necessitate fundamentally different approaches in analysis. 
 
One missense-specific approach is to exploit the locations of missense variants across genes in a 
gene family, and to search for significant clustering of missense variants within 
regions/domains15. Clustering of pathogenic missense variants is expected to often result in 
similar protein function. For example, it has recently been shown that damaging missense 
variants in LONP1 which contribute to congenital diaphragmatic hernia and CODAS syndrome 
are located in distinct regions with different genetic modes of inheritance (dominant and 
recessive, respectively)13. Thus, clustering of pathogenic variants is not only non-random but 
may be phenotype specific, and thus can be used to establish phenotype and disease association. 
 
Analysis of clustering of de novo variants to establish disease association is a nascent approach 
1,16,17. Here, we further expand the clustering analysis approach by quantitatively analyzing the 
clustering of missense variants by the three-dimensional locations of relevant amino acids within 
the folded protein and the functional relatedness between residues. Additionally, using predicted 
models for protein multimers, we also examine clustering of missense variants within an entire 
protein complex, the most relevant biological unit. We name the tool for these analyses 
“AlphaCluster.” 
 
This new approach is enabled by recent major advance in accuracy of protein folding prediction, 
such as AlphaFold18,19 and RoseTTAFold20,21, and the increase in publicly available genomic 



data. While these predictions are not ground truth, they are highly accurate as demonstrated in 
CASP14 and provide meaningful information about the structure of proteins. The increasing 
availability of genomic data from large cohorts such as SPARK (Simons Foundation Powering 
Autism Research for Knowledge) provide sufficient numbers of individuals with specific 
conditions to allow for robust assessment of variant clustering.  
 

Results 

AlphaCluster Overview: Leveraging predicted tertiary structures for missense clustering analysis 

AlphaCluster is a novel clustering analysis tool which enables statistically rigorous measurement 
of the degree of clustering of missense variants within the tertiary structure of a protein. The 
tertiary structure is user specified. The tool comes pre-loaded with tertiary structures from the 
AlphaFold Protein Structure Database developed by DeepMind and EMBL-EBI which contains 
protein folding predictions for 992,316 structures from the human proteome, to examine variant 
clustering in three-dimensional space. It draws inspiration from denovonear, which performs 
clustering analysis strictly based on genomic positions of variants, calibrated to background 
mutation rates. In addition to performing clustering analysis based on three-dimensional 
positioning in tertiary structures, AlphaCluster incorporates scores to predict alteration in 
function (such as gMVP22 or CADD23) to put greater or lesser weight on variants predicted to 
be more or less damaging.  

The main intuition behind the tool is that significant spatial clustering of missense variants of a 
tertiary structure, similar to the primary structure or genomic precursor, can be detected 
through a frequentist simulation approach. The general “closeness” of all variants is captured in 
a distance metric, and the observed distance is compared for extremity against a background 
distribution of distances observed from simulation under the null hypothesis of no spatial 
clustering. Ideally, this distance metric primarily captures the Euclidean distance between 
affected residues, as well as inherent properties of the variants which suggest potential 
pathogenicity. The distance metric can then be used to detect clustering of pathogenic missense 
variants.  

The algorithm of AlphaCluster works as follows: The 𝑁 variants of interest are fetched for a 
specified gene of interest, from a user defined list of de novo variants. For example, this may be 
a set of de novo variants from an autism cohort, NDD cohort, or some other condition. The 
critical information which must be included is the chromosome, genomic position, reference 
allele, alternative allele, and gene effect (i.e. LoF, missense or synonymous) of each variant. 
Optionally, if the user specifies, variants which fall below a certain score (such as CADD = 25 
or gMVP rank score = 0.7) can be excluded from further analysis. By default, AlphaCluster 
chooses gMVP rank score = 0.7 as a floor threshold. Next, the tertiary structure is parsed for its 
residue sequence and the Cartesian coordinates of each residue. The appropriate transcript 



which maps to the residue sequence is chosen, and if none so aligns, the tool halts because there 
is no function to map between genomic variants and tertiary structure. The Euclidean distance 
between all pairs of residues {R!}!"#$  in which an observed variants maps, is calculated, which are 
then used to calculate a generalized mean of degree p, which is by default the geometric mean (p 
= -1): 

𝑑%!%" = *+𝑥%! − 𝑥%".& + +𝑦%! − 𝑦%".& + +𝑧%! − 𝑧%".& 
generalized	mean(𝑝, @𝑑%!%"A

#'	)*+',

	 ) = C D 𝑑%!%"#-
#'	)*+',

E
-

	 
In the special case where there are duplicate residues with variants, we additively increase each 
observed distance 𝑑%!%" by 3.5 Å, the approximate average length of one amino acid, and 

subsequently subtract 3.5 Å from the final geometric mean. This is a conservative approach, 
which essentially treats duplicate variants as neighboring variants to shift the zero distance to a 
small non-zero value. Additionally, the Euclidean distances between all pairs can be scaled 
based on a damaging-ness score (such as CADD {Kircher 2014} and gMVP {Zhang 2021}), 

	𝑑F)+ = 𝑑)+𝑠) + 𝑠+ 
and these scaled distances used in the mean calculation if the user so wishes. By default, 
AlphaCluster scales the distances with gMVP rank scores. With the geometric mean metric for 
the clustering of the observed variants, or the observed geometric mean for shorthand, 
calculated, a null distribution of geometric means of 𝑁 de novo variants is formed to deduce a p-
value. Namely, a simulation is run to generate samples of 𝑁 de novo variants under the null 
hypothesis (namely, variants occur in conformance to the background mutation rate). The 
geometric mean or scaled geometric mean is calculated for each sample, and a distribution for 
the geometric means or scaled geometric means under the null hypothesis is thus formed. We 
run our simulation with 1E9 iterations by default, but this value can be user specified. Finally, 
the p-value of the observed geometric mean or scaled geometric mean is computed from the 
simulated distribution. The workflow for the entire method is schematically depicted in Error! 
Reference source not found.. 

Increase in evidence for disease association using AlphaCluster compared to conventional 

burden analysis and 1D sequence-based clustering methods 

Previous missense clustering methods have generated p-values from exclusively examining the 
genomic coordinates of variants. We explored the increase in evidence of pathogenicity which 
our new three-dimensional methods provide over the previous 1D approach. We selected 
proteins which were known to demonstrate de novo missense enrichment in autism and NDD 



cohorts, to be used as true positives in our power analysis. For autism, we selected the genes 
DNMT3A24, CHD84, PTEN25 and KDM5B5, and for NDD we selected MAP3K71, TFE31, 
GRIN2A1,26, and DEAF11,27. See Error! Reference source not found. and Error! 

Reference source not found. for a detailed overview of the previous evidence of clustering of 

missense variants in these eight proteins from Kaplanis et al1 and Zhou et al9. 
 
Across various clustering tests (1D clustering, 3D clustering and 3D clustering with gMVP score 
scaling and a threshold of rank score 0.7), we calculated the mean p-values for a given random 
subsample of the total missense variants of the known gene over 100 trials, obtaining missense 
variants from random cohort samples of fixed sizes (ranging from 100, 500, 5,000, 10,000, 15,000, 
20,000, and the full cohort of 21,020 for the autism cohort, and 100, 500, 5,000, 10,000, 15,000, 
20,000, 25,000 and the full cohort of 31,783 for the NDD cohort). Subsampling the cohort 
enabled us to also run burden analyses in the form of the Poisson enrichment test, which is 
important, because our full AlphaCluster test combines clustering p-values (from 3D clustering 
with gMVP score scaling and a threshold of rank score 0.7) with these Poisson test p-values to 
detect likely missense disease mechanisms. Correspondingly, we performed analysis with Fisher 
combined p-values of the Poisson enrichment test and these different missense clustering tests, 
as well as compared against the p-values of the Poisson enrichment test as a baseline (Error! 
Reference source not found.a for autism and Error! Reference source not found.a for 
NDD), as a way to benchmark AlphaCluster. AlphaCluster showed a marked decrease of 
average p-values compared to tests which used 1D clustering or simple 3D clustering (without 
use of predictive damaging scores) in DNMT3A, CHD8, PTEN and KDM5B for the autism 
cohort, and MAP3K7, TFE3, GRIN2A and DEAF1 for the NDD cohort.  
 
Additionally, we estimated statistical power of risk gene discovery by de novo missense variants 
only. We combined the evidence from the clustering and enrichment tests at various significance 
thresholds using Fisher’s method. We observed an increase in power over the 1D and simple 3D 
clustering analyses (Error! Reference source not found.b for autism and Error! Reference 

source not found.b for NDD) for all four true positive cases in the autism and NDD cohort. 

 
  



AlphaCluster reveals several new candidate genes for NDD and autism 

We reran the 1D clustering analysis which was performed in Kaplanis et al. using the de novo 

missense variants from the NDD cohort and enrichment p-values from the previous analysis. We 
reproduced 186 positive results compared to the original 188. The discrepancies are negligible 
(MMGT1 at p-value = 3.70E-6, and NR4A2 at p-value = 2.52E-6).  
 
We turned to the entire set of 204 genes which reached genome-wide significance from 1D 
clustering analysis Fisher combined with DeNovoWEST enrichment analysis from Kaplanis et 
al1 or through AlphaCluster. A substantial proportion of these genes are likely to have altered 
function mode of action2, such as gain of function or dominant negative effects. Of the genes 
which reached genome-wide significance through either of these two methods, AlphaCluster 
showed more evidence of pathogenicity in 194 of the total 251 genes (Error! Reference 

source not found.a). Additionally, for completeness, we show the counts of genes which 

reached genome-wide significance through the 1D approach employed by Kaplanis et al., 
AlphaCluster, and a customized version of AlphaCluster which used CADD annotation scores 
(in place of gMVP rank scores) with scale scoring and a threshold of a CADD score of 25 
(Error! Reference source not found.b).  
 
When AlphaCluster was applied (3D clustering analysis which is further enhanced with gMVP 
annotation scores as described), we identified 50 genes which were not formerly identified at the 
genome-wide level from the 1D clustering analysis. Of these, 34 only reached significance by 
AlphaCluster and were not identified from Kaplanis et al., either from the missense driven 
analysis nor the LoF and missense driven enrichment test (Supplemental Data 1), whereas 16 
reached genome-wide significance when LoF variants were considered. YWHAG, PPPC3A, and 

DHX30 are three such genes. Figure 4 highlights how our 3D clustering captures variant 
clustering which 1D analysis cannot. Finally, eleven of these 34 genes (BMPR2, SLC18A3, 

KBTBD7, MAST3, PSMC3, KIAA0100, ZBTB39, CAMK4, TMEM63B, KAT8 and ATF2) are 
novel candidate genes in the sense that they were not identified by Kaplanis et al., nor are they 
listed with an associated phenotype in the Development Disorder Genotype - Phenotype 
Database (DDG2P), though other supporting studies may exist. These eleven genes are 
presented in Error! Reference source not found.. We analyzed these genes for evidence of 
NDD association, as well as molecular function and known protein interactions (see Error! 

Reference source not found.). 
 

This same analysis was performed for autism, with a similar result. We reproduced the analysis 
of Zhou et al., in which eleven genes reached genome wide significance from missense enrichment 
p-values Fisher combined with 1D clustering analysis p-values. In our reproduced analysis, all of 
these genes reached genome wide significance, except the near-miss of MYT1L (p-value = 
2.73E-06). An additional eight candidate genes which did not reach genome-wide significance 
from the missense enrichment combined with 1D clustering reached genome-wide significance 
through AlphaCluster (GRIN2B, ADNP, CHD2, TAOK1, CLCN4, GABBR2, TBL1XR1 and 



SATB2). Of these 8 genes, GABBR2 and SATB2 are novel risk genes in the sense that they did 
not reach genome-wide significance in Zhou et al or Satterstrom et al, nor had they conclusively 
been shown to be associated with autism. These eight genes are presented in Error! Reference 

source not found., and existing supporting evidence for GABBR2 and SATB2 are summarized 

in Error! Reference source not found.. 

Several complexes show significant clustering of missense variants in NDD 

Thus far, we have demonstrated the ability and power of AlphaCluster, and 3D clustering 
analysis more generally, to provide evidence of pathogenic clustering in protein models and to 
detect potential missense disease mechanisms. Here, we show that these approaches can be 
extended to quantify the clustering of missense variants within a protein complex.  
 
We applied the same clustering analysis as in the protein singleton case, aggregating de novo 
missense variants from the component proteins of a complex, running simulation aided analysis, 
using gMVP rank scores for scaling and a rank score of 0.7 as a lower threshold. An example of 
clustering analysis over a multimeric complex is presented for the GABA-A 𝛼1𝛽2𝛾2 pentamer 
(Error! Reference source not found.a and b), which is a GABA-A 𝛼1𝛽2𝛾2 receptor relevant to 
autism and NDD. It is composed of two GABA-A receptor 𝛼1𝛽2𝛾2 1, two GABA-A receptor 𝛽2 
and one GABA-A receptor 𝛾2 protein subunits, encoded by GABRA1, GABRB2, and GABRG2 

respectively. It should be noted that while there was a pre-existing human model of GABA-A 𝛼1𝛽2𝛾2 (PDB ID: 6D6T28), we also generated multimeric predictions of GABA-A from scratch 
using AlphaFold’s multimeric capabilities. We found a high level of congruence between the 
models created through both models. Our analysis of the clustering of the 14 de novo missense 
variants from our autism cohort on the five composite proteins (3 in GABRA1, 3 in GABRB2 

and 2 in GABRG2) yielded a 3D protein clustering p-value of 0.065, whereas the same analysis 
run separately with the 65 de novo missense variants from our NDD cohort (13 in GABRA1, 18 
in GABRB2 and 3 in GABRG2) yielding a 3D protein clustering p-value of 4.7e-4. The variants 
from NDD and autism lie in similar regions, namely the 𝛼-helices of the transmembrane domain, 
and so the clustering results are likely to be more robust for large autism cohorts as the number 
of observed DNVs in these proteins increases with larger sample sizes. Importantly, in NDD, the 
protein subunits of GABA-A show no observed LoF variants but only missense variants. 
Whereas GABRA1 and GABR2 reached genome wide significance both from AlphaCluster and 
1D clustering analyses, GABRG2 did not reach genome wide significance when considered as a 
singleton through AlphaCluster or previous 1D clustering analyses. 

 

Discussion 

We present AlphaCluster, a new method aimed to facilitate elucidation of the role of missense 
variants in genetic diseases. AlphaCluster allows users to quantify and statistically assess the 
clustering of missense variants for a given protein model, thus identifying proteins which show 
higher than expected clustering of variants that may alter protein function in a similar manner. 



As demonstrated, this can be used to identify risk genes for disease and to identify pathogenic 
variants in established disease associated genes.  
 
Additionally, our approach can study protein complexes and aggregate de novo variants across 
the protein complex and detect interactions between regions of different proteins within the 
complex. Previous work has shown that missense variants disrupting protein-protein interaction 
interface is enriched in autism29 and other conditions. AlphaCluster is an advance to perform 
statistical test which more closely approximates the biologically functional unit. We anticipate 
that with the greater accuracy and availability of protein-protein interaction models, our 
method will have even greater impact. 
 
Through use of AlphaCluster, we have identified several new candidate genes associated with 
NDD and autism. It is important to note that these candidate genes result entirely from our 
new method, and not any increase in sample size (as the trio cohorts we used were those from 
two previous studies). These candidate genes reached genome-wide significance, though 
functional assessment of the missense variants is still required to understand the molecular 
mechanism. It is also important to note that AlphaCluster can be applied to any disease cohort 
with de novo variant calls and can serve as an additional tool in the standard collection of 
WES/WGS statistical tests, alongside TADA and DeNovoWEST. 
 
The core method of AlphaCluster presents opportunities for further expansion. Noticeably, the 
current method is applicable only to de novo variants, since the background mutation rate of de 
novo variants is well established. AlphaCluster could be extended to inherited variants, given a 
careful choice of inherited background variant frequency. Additionally, AlphaCluster uses static 
protein structures to provide locations for residues impacted by missense variants, whereas most 
proteins are truly dynamic in nature. The use of static models does limit the ability to detect 
clustering which may be more apparent in a different protein configuration than what one static 
model present. As the field of protein folding predictions produces more dynamic modeling of 
proteins, such as the dynamic modelling of an entire nuclear pore complex30, AlphaCluster 
should be expanded to test for clustering on dynamic models.  
 
In general, our results suggest new opportunities for the dual application of predicted protein 
models and large genomic cohort data. Looking ahead, we anticipate continued advancement on 
both fronts, with increasing genomic data availability and more precise protein and protein 
complex models. The power and applicability of AlphaCluster should increase with those 
advances. 
 

Methods 

Software implementation 



AlphaCluster is a comprehensive expansion of denovonear1. It is a python script which wraps a 
core C++ library which performs the simulation calculations (the computational heavy lifting), 
and interfaces with this library through a cython intermediate layer. We create additional 
python scripts for the processing of PDB files for the Cartesian locations all residues. 

Protein representation of preloaded models 

AlphaCluster uses the canonical UniProtKB sequence to create the models of human proteome. 
Thus, for the preloaded PDB models are of the canonical UniProtKB sequence, although it is 
well known that proteins often exhibit multiple isoforms. These alternative isoforms can be 
explored given a protein model of this alternative isoform. 

Mapping genomic variants to residue positions 

Much care was taken to ensure a proper mapping of genomic variants to the impacted residue 
on the given protein. Our approach was to be conservative. We translated the canonical 
transcript of a given gene to its corresponding amino acid sequence and checked if this sequence 
was in perfect agreement with the protein sequence of the selected protein model. If it was not, 
but there was a subsequence of both which was in perfect alignment, we reduced the scope of 
our analysis to this subsequence and variants within. If there was still no alignment, another 
transcript is attempted. If all transcripts show no alignment, AlphaCluster returns a 
misalignment error.  
 
Virtually all the relevant genes (the 6060 and 2468 genes for the NDD and autism cohort with 
at least two missense variants, respectively) were amendable to AlphaCluster, displaying perfect 
mapping between the canonical transcript and the canonical UniProtKB sequence.  

Handling of repeat missense variants in clustering test 

It is often the case that true risk genes and proteins present the identical missense variants, or 
the identical residue impacted by the missense. This introduces the difficulty of how to measure 
the distance between repeatedly impacted residues. Given our choice of metric, if there was not 
special handling, the geometric mean in the case of repeat residues would be zero. To correct for 
this, in the case of repeat residues, we increment each distance by 3.5, because the average 
length of a residue is 3.5 angstrom. Then, we proceed with calculating the mean, but and 
decrement this value by 3.5 after calculation: 
 

𝑑′%!%" = 𝑑%!%" + 3.5 = *+𝑥%! − 𝑥%".& + +𝑦%! − 𝑦%".& + +𝑧%! − 𝑧%".& + 3.5 
generalized	mean L𝑝, @𝑑%!%"A

#'	)*+',

	 M = C D 𝑑.%!%"#-
#'	)*+',

E
-

− 3.5	 



We note that this is a very conservative handling of this case, which approximates a repeatedly 
impacted residue with the case of two neighboring residues being impacted, whereas, in reality, 
the former is much more of a significant phenomenon.  

Protein complex mode of AlphaCluster 

The protein complex model of AlphaCluster runs in essentially the same manner as its singleton 
counterpart. It is important to note, however, that in tests where the complex has proteins 
which appear two or more times in the complex (such as a homodimer, or a trimer with a 
repeated protein) the identical residue is selected for each copy of the protein in the complex in 
our simulation. This prevents the case of having the observed missense variants be 
symmetrically coordinated in a way that increases the observed amount of clustering, whereas 
the simulated missense variants would not have this symmetry if each individual protein had 
uniquely simulated impacted residues.  

Best use of damaging scores in AlphaCluster 

 
The traditional use of predicted damaging scores, such as CADD, for the systematic analysis of 
missense variants is a thresholding approach, in which some threshold is used to categorize Dmis 
and below damaging missense (Bmis), which are thought to be noise, and to exclude the Bmis 
variants from further analysis. In AlphaCluster, we propose to not treat all missense variants 
the same, as do current 1D clustering approaches, but to scale the distance between two 
variants by the inverse sum of their damaging scores. This in effect puts more weight on two 
nearby Dmis variants more so than two nearby Bmis variants. We call this approach score-
scaling. As already seen in the previous section, score-scaling shows significant decreases in 
mean p-value and increases in power over the 3D clustering approach unaided by damaging 
scores (in which the distance between two variants is the true Euclidean distance).  
 
We tested if score-scaling was also more powerful than the traditional score threshold approach. 
We ran a power analysis, like those of the previous section, except where for the traditional 
score threshold approach, the enrichment test was the Poisson test where background mutation 
rate is that rate for the given classification of Dmis used for the clustering analysis. We 
determine that the scale thresholding provides a more powerful statistical test than does 
thresholding the missense variants (Error! Reference source not found.).  

Poisson test used for enrichment 

We elected to simply use the Poisson test to arrive at a significance for enrichment of missense 
variants. 

Fisher combination of Poisson test p-value and clustering test p-value 



The p-values for both the Poisson enrichment test and the clustering analysis are presumed to 
be independent under the null hypothesis. Indeed, if a given gene is not a risk gene, then neither 
is it expected to have any significant enrichment for missense variants, nor significant spatial 
clustering of missense variants. This assumption of independence under the null enables us to 
arrive at our final p-value, using Fisher’s combined probability test for independent tests: 
 	χ/&	~ − 2Qlog(p012!345016) + logQp3789602!1:TT 
 
The resulting p-value is the final p-value returned by AlphaCluster.  

Cohorts and de novo variants 

Several autism cohorts were used as a source of de novo variants from affected probands 
(SPARK9,31, SSC32 and ASC33), whereas the cohort from Kaplanis et al. was used to source NDD 

de novo variants. Cohort information for autism an NDD is presented in Error! Reference 

source not found.. 

 
For NDD, we use the de novo variants of “31,058 parent–offspring trios of individuals with 
developmental disorders”. 
 
All de novo variants used in this study are from previously released cohorts. Possible duplicate 
proband inclusion was screen by identical variants, sex, and self-reported race and no duplicates 
were identified. Variant information for autism an NDD is presented in Error! Reference 

source not found.. 
 

Resources 

AlphaCluster: https://github.com/ShenLab/AlphaCluster  
Denovonear: https://github.com/jeremymcrae/denovonear 
AlphaFold Database: https://alphafold.ebi.ac.uk 
gMVP: https://github.com/ShenLab/gMVP  
CADD: https://cadd.gs.washington.edu  
ChimeraX: https://www.cgl.ucsf.edu/chimerax  
dbNSFP: https://sites.google.com/site/jpopgen/dbNSFP 
UniProt: https://www.uniprot.org  
lollipops: https://github.com/joiningdata/lollipops  
Development Disorder Genotype - Phenotype Database (DDG2P): 
https://www.deciphergenomics.org/ddd/ddgenes 
SFARI Gene: https://gene.sfari.org 
 

Data availability 



All of the ASD de novo variants used in this paper are presented in the supplementary table. 
For those of NDD, we direct the reader to Kaplanis 2020, where the de novo variants used were 
those reported. 

Code availability 

AlphaCluster is available on GitHub, along with code necessary to reproduce the results 

presented here. The repository is intended to be user friendly, and easily applicable to other 
WES/WGS cohorts. The de novo variants for NDD and autism come pre-loaded, along with 
those from CHD, CDH, epilepsy, and schizophrenia trio cohorts. 
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Figure 1: Schematic of AlphaCluster infrastructure. (a) A gene of interested is selected (b) the 

n variants of this gene of interest are fetched from the user specified variant table (with possible 
scale thresholding, which only selects some category of Dmis variants) (c) if specified, the 
missense damaging scores for these variants and all potential variants are fetched for later use 
(d) user specified protein or protein multimeric complex three-dimensional model is loaded (e) 
the 3D coordinates of the central carbon atom of each amino acid is retrieved (f) the observed 
geometric mean of the pairwise distances between each variant of the gene of interest is 
calculated; if desired, the pairwise distances can be inversely scaled by the sum of the damaging 
scores of the pair or variants which are below a given threshold can be excluded (g) for 1E9 
iterations (or an otherwise user specified iteration count), n random variants are selected from 
all the possible variants in the gene of interest, with respect to the underlying background 
mutation rate. The geometric mean of the pairwise distances (by default with score scaling) is 
calculated and these geometric means are used to form a null distribution of geometric means 
(h) the null distribution is used to designate a p-value for the observed geometric mean of the n 

actual variants observed in the gene of interest.   
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Figure 2: (a) Mean p-value and (b) power of 100 runs of various clustering tests performed 
over the missense variants of CHD8, DNMT3A, PTEN, and KDM5B from autism cohort across 
random cohort subsample sizes (100, 500, 1,000, 5,000, 10,000, 15,000, 20,000, and the full 
cohort of 21,020). Power was calculated at significance threshold 2.5E-6. The tests are 1D 
genomic clustering Fisher combined with Poisson test 3D protein clustering Fisher combined 
with Poisson, and our AlphaCluster test; additionally, these are compared to the baseline 
Poisson test. 
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Figure 3: (a) A comparison of p-values from the 1D clustering combined with DeNovoWEST 
enrichment test versus AlphaCluster. Of the genes which reached genome-wide significance 
through either of these two methods, AlphaCluster showed more evidence of pathogenicity in 
194 of the total 251 genes (b) a Venn diagram displaying comparative analysis of genes reaching 
genome-wide significance through AlphaCluster, AlphaCluster with CADD annotation scores 
instead of gMVP scores (CADD flavored AlphaCluster), and 1D clustering combined with 
DeNovoWEST missense enrichment test from Kaplanis et al.  
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Figure 4: AlphaCluster lead to increased evidence of missense variant clustering due to better 

capturing of the true Euclidean distance between missense variants not properly represented 
from the genomic mapping in (a) YWHAG (b) PPP3CA and (c) DHX30. Views show affected 
amino acids (in red) which are closer than genomic distance would suggest and dotted red lines 
on the genomic map highlight which distances between missense variants (in blue) are much 
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closer in Euclidean space than genomic space. Open-source package lollipops27 was used in 
creation of the lollipop graphs.   



 
 
Figure 5: (a) Protein model of pentamer GABA-A 𝛼1𝛽2𝛾2 subunits, with location of de novo 

variants from NDD (residues colored red). GABA-A alpha-1, GABA-A beta-2 and GABA-A 
gamma-2 have 13, 18, and 7 missense variants, respectively. (b) Histogram of geometric mean of 
distances between simulated variants choices, with choices calibrated with background mutation 
frequencies. The red line is the observed 3D geometric mean (uncalibrated by missense scores) of 
missense variants in NDD, corresponding to a p-value = 4.7E-4.  
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