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Abstract 
 

RNA binding proteins (RBPs) are important regulators of transcriptional and post-
transcriptional processes. Computational prediction of localized RBP binding affinity 
with transcripts is important for interpretation of genetic variation, especially variants 
outside of protein coding region. Here we describe POLARIS (Prediction Of Localized 
Affinity for RBPs In Sequence), a new deep-learning method for achieving fast, site-
specific binding affinity predictions of RNA-binding proteins (RBPs) to the transcribed 
genome. POLARIS has two modules: 1. a convolutional neural network (CNN) to 
predict overall RBP binding within a region based on transcript sequence content and 
expression level; 2. a Gradient-weighted Class Activation Mapping (GradCAM) 
implementation for efficient signal backpropagation to individual sequence positions. 
We trained the model using enhanced crosslinking and immunoprecipitation (eCLIP) 
data from ENCODE. POLARIS has good performance with a median AUC ~ 0.96 for 
160 RBPs across three different cell lines, substantially higher than selected popular 
published methods trained and tested on the same data sets. When tested on data from 
a different cell line with the same RBPs, the overall performance is maintained, 
supporting the ability of cell-type specific affinity prediction. Finally, the GradCAM 
module allows the model to identify the informative sites in a region that drive 
prediction. The localized prediction facilitates interpretation of the results and provides 
basis for inference of functional impact of noncoding variants. 
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Introduction 
Recently several studies have shown that post-transcriptional regulation acts as a 

major link between rare noncoding variants and human disease [1-3]. Post-
transcriptional regulation is mediated by interaction of RNA-binding proteins (RBPs) 
and messenger RNAs. Leveraging RBP-RNA interaction can help to improve the 
interpretation of noncoding variants in disease studies. However, our current 
understanding of the impact of genetic variation on RBP-RNA interaction is limited due 
to the complex nature of RBP binding: although RBP binding is foremost driven by 
biochemical recognition of specific sequence motifs, many other factors such as RNA 
secondary structure also contribute. Indeed, most motifs [4] still remain unknown due to 
limited in vivo binding data, variability in RBP motif strength, and a complicated 
relationship between raw sequence and true biological binding of RBPs: mere presence 
of a motif alone does not guarantee binding at a genomic site in a particular tissue. 
Therefore, to fully understand the effects of rare noncoding variants in post-
transcriptional regulatory regions, it is first critical to model underlying RBP binding 
with greater accuracy. 

 
In the past few years, large efforts such as the ENCODE (Encyclopedia of DNA 

Elements) project [5] have performed eCLIP (enhanced crosslinking and 
immunoprecipitation) footprinting experiments to capture in vivo binding of RNA 
binding proteins, allowing us to perform large-scale genomics data analyses [6]. New 
methods such as BEAPR [7] have leveraged this crosslinking data to better identify 
allele-specific binding events and prioritize functional genetic variants that likely 
mediate post-transcriptional regulation. Additionally, significant advancements in deep 
learning have provided us with powerful computational tools to solve complex pattern 
recognition problems related to scanning of binding motifs. Current transcription factor 
(TF) and RBP binding models such as the DeepSEA/SeqWeaver [8, 9] and DanQ [10] 
models have seen initial success in modeling binding to sequence using deep neural 
network architectures. Other models like LS-GKM [11], which evolved from the original 
gkm-SVM [12] model, have leveraged more conventional machine learning techniques 
such as support vector machines (SVMs) to predict RBP binding affinity. However, all 
of these models have gaps in several important areas: Firstly, in the case of the 
conventional machine learning models, there is typically too much focus on optimal k-
mer sequence matching; this can entirely miss distributed recognition scenarios involving 
multiple nearby weaker binding motifs, and fails to account for distal factors affecting 
binding in vivo. One example was highlighted by mCross [13], which combined k-mer 
matching with precise crosslinking position registration and showed that SRSF1 can 
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often recognize clusters of GGA half sites in addition to its canonical GGAGGA motif; 
these cases of weak motif clusters are difficult to capture with a singular k-mer focus. 
Secondly, when the feature set is extremely large and network architecture extremely 
deep or complex, as in the case of many popular neural network models, there is a 
frequent danger of lessened model interpretability. And thirdly, model predictions tend 
to be only for presence of binding within a region, with any possible downstream 
localization scripts being inefficient and slow to use to generate localized RBP binding 
maps at large scale.      

Here we describe POLARIS, an integrated convolutional neural network (CNN) 
model that utilizes not only sequence context, but also target gene expression levels and 
regional transcript annotation in order to generate a more accurate model for RBP 
binding prediction. By incorporating these additional factors into the feature set and 
simplifying the network architecture, POLARIS is able to reach excellent validation set 
performance while remaining an interpretable and biologically grounded model. Finally, 
the built-in GradCAM module allows localization at single bp-resolution of the RBP 
signal on the original input sequence, in a way that is mathematically efficient and can 
be run at large scale to generate fine-tuned RBP binding maps.  

 
Results 
 
Binding model structure and predictors 

 
POLARIS utilizes a convolutional neural network (CNN) as the engine to drive its 

sequence pattern recognition module. CNNs were originally designed for computer vision 
tasks such as handwritten digit interpretation [14-16], and more recently have been 
applied with success in many areas of genomics and structural biology. The principle use 
of convolutional layers is their capability to extract hierarchical features, or nonlinear 
spatial local patterns, from images or sequence data. In effect, successive layers perform 
new feature creation using the feature set of the previous layer’s nodes, with the final 
layer determining a prediction based on advanced compound features.  When building a 
modern CNN, each convolution layer is typically immediately followed by a ReLu 
Activation function, which adds nonlinearity and sharpens features with positive 
predictive values, Max Pooling, which adds shift invariance and helps computability 
[17], and random Dropout, which acts to regularize the training process. Model weights 
and biases are all updated each epoch in the training process via backpropagation, 
which converts the complicated neural network update task into a tenable stochastic 
gradient descent problem [18].  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2021. ; https://doi.org/10.1101/2021.06.02.446817doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.02.446817
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

POLARIS’ design follows this classical convolutional neural net framework: the first 
set of convolutional and max pooling layers serve to learn precise sequence motifs, while 
the second set of layers captures overarching patterns in the sequence (Figure 1). Max 
pooling and Dropout, as well as L2 regularization within the convolutional layers, are 
used to generalize training and make the model more robust. Because presence of a 
sequence-binding motif alone is insufficient to indicate RBP binding in tissues where the 
gene is not expressed - RBPs only bind to certain genes in certain tissue contexts - gene 
expression level is used to help guide the likelihood of actual RBP binding in vivo. On 
the other hand, inclusion of transcript regional annotation data takes advantage of the 
varying sequence properties at different regions of the transcript: for example, GC 
content of 5’UTR regions is typically higher than that of 3’UTR regions [19], which can 
heavily influence motif recognition and RBP binding affinity. 

 
Figure 1. POLARIS model architecture 
The binding module uses a classic two-layer convolutional neural network (CNN) structure, 
with max pooling and dropout layers after each convolution, and eventual integration of 
transcript region type annotation and nearest gene expression before the final Sigmoid binding 
output. The GradCAM localization module calculates the gradient of each convolutional filter 
with respect to this output, and maps the bp-specific contribution to the output of each 
position in the input sequence. In other words, it highlights the RBP binding motif(s) driving 
recognition of the full window as a binding region for a particular RBP. 
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Model training and evaluation 

 
POLARIS was trained using eCLIP RBP assay peaks, taken from ENCODE 

database.14 RBPs generally had ≫10k peaks each (median: 28,237 peaks, mean; 38,671 
peaks, sd: 33,087 peaks), a large enough N to suggest feasibility of deep learning 
(Supplementary Figure S1). These peaks were further processed with CLIP Tool Kit 
(CTK) [20] into narrower, higher confidence sets of in vivo binding sites for each RBP; 
these positive training data regions indicate true RBP binding either within or close to 
them. Negative sequences for each RBP were sampled at random from transcribed 
regions of the genome, under the constraint that the overall GC content distribution of 
the negatives match that of the corresponding positives (Supplementary Figure S2). 

In addition to genomic sequence inputs, POLARIS also includes input channels for 
target gene expression levels of the corresponding cell type where the eCLIP sequence 
data was generated, and transcript regional annotation type (3’UTR, 5’UTR, introns, 
exons, promoters, proximal 1-5kb intergenic sequence, or no annotation) of each 
sequence.  Regional annotation type was determined by the longest transcript in the 
given region from GENCODE, and the gene expression data is logscale transcript parts 
per million (TPM) values from the RNA-seq data by ENCODE. We used all of these 
inputs to train POLARIS on 112 unique RBPs from the adrenal gland, HepG2, and 
K562 cell lines, for a total of 160 separate RBP models (if a RBP had data from 
multiple cell lines, they were trained and considered separately). 

 We randomly partitioned the eCLIP data to training (80%) and testing (20%), with 
balanced positives and negatives. During training, we used five-fold cross-validation to 
evaluate models for each RBP. The binding model with the highest mean AUC in cross-
validation was selected as the optimal model for each RBP. Same-cell model AUCs 
referenced in this paper refer to validation set performance of these final RBP models 
for the most fair and generalizable metric. The POLARIS model was implemented in 
Tensorflow 2.2 with Keras API, with the entire training process taking around 5-10 min 
per RBP on an NVIDIA GTX 1080 GPU with 2560 cores and 8 GB memory. 

 
Performance of POLARIS in predicting RBP binding affinity  
 

We find that POLARIS is able to successfully predict binding, with a median area 
under the curve (AUC) of 0.957 across all 160 RBPs analyzed (validation set, 5-fold CV, 
same-cell). To understand performance variance across RBPs, we plotted the 
distribution of binding prediction AUCs for these 160 RBPs (Figure 2a). As expected, 
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POLARIS’ model performance improves as the sample size for an RBP increases (Figure 
2b).  

A major goal of POLARIS is to predict cell-type specific RBP binding. To evaluate 
this, we tested the trained models for each given RBP across cell lines. For example, we 
trained a QKI binding model on data from the HepG2 cell line, then tested the model 
using data from the K562 cell line, and vice versa. POLARIS was still able to achieve a 
high AUC of 0.942 using cross-cell method of validation (Figure 2c, first two rows). As a 
baseline method, we used the eCLIP sites from one cell line (HepG2, K562) to directly 
predict binding in the other - without any actual neural network training - to see how 
much inherent overlap there was in the binding peaks. The final row of Figure 2c shows 
that this baseline method performs poorly, with a median AUC of only 0.778. 

 
 

 

                

 
Figure 2. Performance of POLARIS on predicting RBP binding affinity 
using in-cell 5-fold cross validation.  
a) Density distribution of area under receiver operating characteristic curves (AUC) 
for each RBP binding prediction across all 160 RBPs.  

a)                                                  b)                                          

c)                                                                                    
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b) AUC of each RBP plotted against its respective sample size in log scale. 
c) Comparison of in-cell vs. cross-cell comparisons (first two rows). The final row 
“No Training” shows cross-cell accuracy with a naïve baseline model (negative 
control) that predicts K562 binding status exactly from HepG2 (and vice versa). 

 
Evaluation of prediction feature importance 

 
When designing the model framework for POLARIS, we saw that including features 

based on prior knowledge of biological mechanisms, such as target gene expression and 
transcript regional annotation categories, boosted model performance (Figure 3a). 
Addition of the regional annotation feature to the base CNN model increased median 
AUC from 0.899 to 0.932. Alternatively, addition of gene expression values increased 
median AUC from 0.899 to 0.945. The best validation set performance was achieved 
with inclusion of both features (median AUC = 0.957), which is the setup used in the 
final POLARIS model. 

 

  
Figure 3. Evaluation of POLARIS model features and secondary structure 

impacts 
a) RBP binding prediction improves when explicitly adding gene expression and transcript 
annotation information as inputs. The final binding prediction model used in SUPRNOVA 
incorporates both gene expression and annotation inputs. 
b) Performance (measured as AUC) when including secondary structure context (hairpin 
loop, internal loop, etc.) is slightly improved when the input sequence length is small. This 
is indicated by a shallower slope than 1 for the red 10bp line. However, once the input 
sequence length is increased, included secondary structure information no longer affects 
POLARIS’s performance. 

 
 

a)                                                                        b)                                          
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Effects of adding predicted secondary structure of mRNA 

 
RNA secondary structure is a major factor of binding affinity of certain RBPs [21]. 

We followed a technique presented in Koo et al. [22] to investigate if including 
secondary structure information as input can improve binding prediction. After using 
RNAplfold [23] (with Kazan, H.’s modified script [24]) to annotate sequences with 
predicted secondary structure information, we fed this information into our model as an 
additional input channel (similar to the channels for gene expression and regional 
annotation). Simpler, motif-only models such as PWMs, k-mer SVMs, and small-window 
neural networks see a boost in prediction performance with addition of secondary 
structure feature [22, 24, 25]. Indeed, even POLARIS saw a performance boost with 
RNAplfold when limited to a more narrow 10bp window size. However, inclusion of 
these structure profiles did not boost the performance of the POLARIS models with 
sufficiently large input sequence length (Figure 3b). 

 
Comparison with other methods 

 
Besides a standard CNN, a recurrent neural network (RNN) hybrid model was also 

considered for the core POLARIS framework. Based on the work of Quang et al. [10], 
which highlighted the potential benefits of long short-term memory (LSTM) layers, we 
tested a CNN-LSTM hybrid version of POLARIS that replaced the second convolutional 
layer with an LSTM layer. The input data was exactly the same as what we had used 
to evaluate the CNN architecture; however, despite taking longer to train, this hybrid 
model did not provide any performance gain, only achieving median AUC of 0.933. 

 POLARIS outperforms previously published methods such as the gapped k-mer 
based SVM model, LS-GKM (from Lee, D. et al. [11], based on the original gkmSVM 
[12]), and the standard CNN-based DeepSEA model from Olga Troyanskaya’s group [8] 
that Seqweaver utilizes for its post-transcriptional modelling. After re-training these 
methods from scratch using the same input data as POLARIS and performing 5-fold 
cross validation, Seqweaver achieves a median AUC of 0.871, and LS-GKM reaches a 
median AUC of 0.892 (Figure 4a). These are more comparable to the performance of our 
basic model framework (median AUC = 0.900), which did not include expression or 
annotation data. We also tested a version of Seqweaver into which we integrated our 
exact expression and region type tensors used in POLARIS (labeled “Seqweaver+” in 
Figure 4a). This brought results significantly closer (median AUC = 0.931), but overall 
POLARIS was still more consistent and had higher average performance (median 
AUC=0.957). We show RBP-specific results for three examples: RBFOX2, ILF3, and 
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QKI, with each trained in HepG2 and tested in K562 (Figure 4b,c,d). In ILF3 and QKI 
in particular, each with N ~ 30k eCLIP peaks, we see some of the most significant 
performance improvements over the competing models. 

 

 
                                  
 
 
 
 
 
 
 
 

Figure 4. Performance of POLARIS compared to other computational methods 
for predicting RBP binding affinity 
a) Violin plot showing distribution comparison of all methods’ cross-cell performance 
results. Depending on the RBP, cross-cell performance of Seqweaver + expression + region 
type annotation got near POLARIS, but overall POLARIS was more consistent and had 
higher average performance. 
b,c,d) Specific examples for RBFOX2, ILF3, and QKI, respectively: all were trained in 
HepG2 and tested in K562. In ILF3 and QKI in particular, each with N ~ 30k eCLIP 
peaks, we see some of the best performance improvements over the competing models. 

 
GradCAM results for determining localized affinity and motif discovery 

 
Finally, we used a one-dimensional version of gradient-weighted class activation 

mapping (GradCAM) [26] to localize sites within an original input sequence that are 
informative for binding prediction (Figure 1). The powerful algorithm can robustly 
highlight causal subsections of input (roughly corresponding to RBP binding motifs in 
our case), regardless of how many layers the model contains or how the neural network 

c)                    ILF3                             d)                 QKI                     

a)                                                                   b)              RBFOX2                       
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architecture is set up. It also allows our localization method to be mathematically 
efficient, making it possible to run at large scale to generate fine-tuned binding maps for 
all available RBPs at once. 

We implemented the GradCAM algorithm as a single reverse pass once the binding 
module determines an overall prediction for the full window (see Methods for full 
details). Recovery of canonical motifs, for two representative examples (RBPs RBFOX2 
and EFTUD2), are shown in Figures 5a,b. We qualitatively compared the highest 
activating regions for each RBP’s sequences to their respective known canonical motifs 
(based on mCrossBase[13]), and found a high recovery of known motifs, as well as 
plausible novel candidate motifs for RBPs with no available motif data.  

 
Figure 5. Recovery of canonical motifs using POLARIS’ GradCAM module.  
Shown are heatmaps for two representative RBPs: RBFOX2 (a) and EFTUD2 (b); 
sequence is shown in multiple rows for visibility, but are 1-dimensional character strings. 
Canonical binding sites and sequence logos have been taken from mCrossBase. 
 
 

Investigating strong POLARIS performance for weak motifs with GradCAM 
It is natural that POLARIS performs well when trained on RBPs whose binding 

motifs are especially consistent and clear to separate from surrounding genomic 
sequence. Thus, a naive expectation is that validation AUC positively correlates with 
information content of sequence logos, a proxy of motif quality. The information content 
for each RBP was calculated by considering the top ten strongest motif versions most 
associated with the given RBP; we obtained these from mCrossBase database, which 
makes accessible results from the aforementioned mCross paper [13]. In order to obtain 
a single information content metric for each RBP, we selected the maximum total 
information content value (summed across positions) out of all of the candidate motifs.  

a)                                                                 b)                                          
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However, when we made a scatterplot of this relationship (Figure 6a), we found an 
observation of POLARIS’ performance that was not trivial to explain: although the 
general positive correlation trend was confirmed, there was a group of RBPs in the top-
left corner with low motif information content that nevertheless had very strong 
performance (AUC threshold >0.95 and AUC/IC ratio of .09; highlighted in red). 

Our working hypothesis to explain this was that RBPs with weaker motifs could 
have multiple binding sites per binding window, to raise the total regional information 
content and enable post-transcriptional regulatory control with the same level of 
precision as RBPs with strong motifs. It was previously shown that this could be the 
case in the mCross paper [13], which found that the RBP SRSF1 can recognize clusters 
of GGA half-sites in addition to its canonical GGAGGA motif. We investigated the 
over-performing (red) RBP models by considering density of diffusion/entropy for them 
vs. the other (black) ones; calculations for this step are detailed in Methods, Equation 3. 
We found that weaker motifs generally did have more spread of binding score in the 
window, with a clear enrichment of their RBPs at higher diffusion values (Figure 6b). 
This indicates multiple binding sites in the region, and confirms the plausibility of our 
hypothesis.  

                                                                

Figure 6. Investigating strong POLARIS performance for weak motifs 
a) AUC of each RBP plotted against the information content for each given RBP’s 
binding canonical binding motif, taken from mCrossBase. Highlighted in red are the weak 
motifs that still have very strong performance (AUC threshold >0.95 and AUC/IC ratio of 
.09) 
b) Density of diffusion/entropy for red RBP models vs. black ones, using the same color 
scheme as panel (a): weaker motifs generally do have more spread of binding score in the 
window, indicating multiple binding sites in the region. 
 

a)                                           b)                                          
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Discussion 
 

In this study, we presented POLARIS (Prediction Of Localized Affinity for RBPs 
In Sequence), a new deep-learning method that is an integration of a CNN to predict 
RBP binding to the transcribed genome from genomic sequence, nearest gene 
expressions, and region type annotations, with a GradCAM implementation for 
efficient localization of this signal backpropagation to individual sequence positions. 
We demonstrated that the model is able to achieve very strong RBP binding 
prediction performance (~0.957 median AUC) that outperforms traditional sequence-
only based prediction models and competing neural networks. Indeed, the results of 
DeepSEA (median AUC = 0.871) and LS-GKM (median AUC = 0.892) on our held-
out validation set were more comparable to the performance of our basic POLARIS 
model framework, which does not include expression or region annotation data; this 
suggests that the biological mechanisms that drive feature selection in POLARIS are a 
big part of what helps our model outperform existing methods. By incorporating these 
additional factors (gene expression, region type) into its base feature set, POLARIS is 
able to reach optimal validation set performance with fewer convolutional filters, and 
is consequently easier to parse and understand. Thus, despite utilizing neural 
networks, POLARIS is both interpretable and biologically grounded, important 
qualities to be able to verify results, investigate the genetic underpinnings driving 
model predictions, and make educated application of the model in downstream 
analyses.  

Regarding model architecture, POLARIS model layers have clear roles: upper 
convolutional layers handle the bulk of RBP motif learning, later convolutional layers 
are responsible for incorporating more distal effects like global RNA secondary 
structure, and the intermediate dropout and max pooling layers help select 
representative data, minimize risk of overfitting, and enhance learning efficiency. 
Keeping POLARIS extremely condensed was not a top priority, since even the full 1kb 
models do not take up much storage space or runtime on modern machines or clusters: 
thus, we decided to learn a large number of informative filters (100) for each RBP 
individually, rather than dilute model power with individual filters for each RBP within 
one structure. At the same time, we use various regularization techniques throughout 
the model (L2 regularization in convolutional layers, followed by Max Pooling and 
Dropout), which combined with our relatively simple architecture help reduce 
overfitting risk despite a large number of total trainable parameters. Our experiments 
with a recurrent neural network (RNN) hybrid model did not provide any notable 
performance gain (median AUC only 0.933). This implies that our final CNN-based 
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POLARIS model is sufficient in capturing hidden sequential information that is actually 
useful for in vivo binding prediction. 

We took several important steps to optimize training and guide the model towards 
learning real biological and genetic properties. For instance, without the step of 
accounting for GC content in the randomly sampled negative training sequences, the 
prediction model could inadvertently learn confounding patterns in the data that are 
not directly relevant to RBP binding. We also minimized overfitting risk within our 
robust training and evaluation procedures, although we caution that all of the original 
RBP binding data was generated exclusively with eCLIP experiments from ENCODE 
– thus, it is not possible to rule out that some aspect of POLARIS models artifacts 
from eCLIP experimental protocol. We contend that this is unlikely to be significant, 
and future testing on alternative data sources will confirm the full generalizability of 
our model to arbitrary sources of sequence binding data. Finally, our reported 
POLARIS AUCs were taken from validation set performance, which was entirely 
isolated during model training and selection. Performance remained high (median AUC 
~ 0.942) even when using cross-cell evaluation, despite eCLIP overlap being relatively 
low and therefore making this a challenging test. Altogether, these results indicate that 
our model successfully learned sequence motifs and general in vivo binding affinity 
patterns for each given RBP, rather than over-fitted patterns unique to a certain 
tissue or region context. 

In accordance with expectations, we also saw that as the sample size for an RBP 
increases, so too does its model performance: this is because neural networks require 
sufficiently large training sets to be able to accurately learn patterns within the 
dataset, so with more data, the model has more information to learn from to 
outperform competing models at prediction of in vivo RBP binding. In this way, use-
cases involving simultaneous integration of multiple RBPs will have more stable and 
consistent behavior across all analyzed RBPs. POLARIS model performance being not 
only high but also robust across RBPs and cell line allows for extrapolation and utility 
in tissues other than those necessarily present in the training set: this directly counters 
the critical hurdle of sparse data, which inevitably presents itself when trying to build 
such models with the goal of generalizability. 

We show that our performance gain over competing models is plausible in two key 
ways: 1. evidence that the performance gain over simpler competing models such as 
PWMs and SVMs can be attributed to implicit learning of real biological factors such 
as RNA secondary structure, and 2. Direct extraction and visualization of informative 
RBP binding motifs, using our implementation of gradient-weighted class activation 
mapping. Although POLARIS saw a performance boost with RNAplfold when limited 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2021. ; https://doi.org/10.1101/2021.06.02.446817doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.02.446817
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

to a narrow 10bp window size, inclusion of these structure profiles did not boost 1kb 
POLARIS model performance when given sufficiently large input sequence length. As 
suggested by Koo, et al., this indicates that the original model is already able to 
implicitly capture this information within later convolutional filters. While we caution 
that the dynamic nature of secondary structure and inaccuracy of prediction can 
confound the analysis, this apparent secondary structure learning from distal sequence 
represents a very important advantage when modeling in vivo RBP binding instead of 
merely motif match/mismatch. Another helpful factor could be our more careful 
curation of representative training data, including upstream fine-tuning of eCLIP 
peaks with CLIP Tool Kit (to improve resolution of protein-RNA interactions by 
determination of exact crosslink sites and connection of peak valleys) and RBP-specific 
training with custom GC-balanced negative sets. These steps help the model focus on 
learning only representative motifs and relevant distal features for binding prediction, 
rather than noise or biases in the data. It is common in the field to use random eCLIP 
sites of other RBPs as negatives for a given RBP, in order to control for eCLIP 
experimental protocol and regional preferences. However, we believe that our 
transcribed, GC-balanced negative regions could actually account better for the most 
prominent of these factors for each individually trained RBP, while simultaneously 
enabling our model to minimize any biases against RBP complexes, the primary way 
in which RBPs physically act upon transcripts in reality. Additional validations on 
alternate sources of RBP sequence binding data, such as older cross-linking 
immunoprecipitation (CLIP-seq) data, will be required to verify this intuition.  

Finally, POLARIS’ GradCAM module provides a method to interpret the prediction 
in a way similar to conventional binding motifs without the limitation of linearity. This 
ability to efficiently backpropogate binding signal to subsections of the input sequence 
driving the prediction (at single base pair resolution) is a novel addition to the field of 
genomic binding modeling with CNNs. It is useful both for localizing overall RBP 
binding predictions and for quickly extracting biologically-grounded RBP binding 
motifs, equally canonical and novel ones. Overall, with its focus on localized prediction, 
POLARIS is especially well suited for in vivo binding motif interpretability and 
downstream variant effect prediction. In particular, we expect the POLARIS model can 
be a component of a method for predicting functional impact of noncoding variants 
useful for genetic studies. 
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Methods 
 
Data processing for RBP binding model 
 

We obtained eCLIP (enhanced crosslinking and immunoprecipitation) RBP binding 
data from ENCODE [5]. eCLIP data is stored as rows of peaks, specifying chromosome, 
start, and end position of each peak together with an associated p-value. In total, we 
acquired binding data for 112 unique RBPs from the adrenal gland, HepG2, and K562 
cell lines, for a total of 160 separate RBP eCLIP peak files. Our final positive dataset 
for the RBP binding model was generated from this eCLIP data by first removing 
singular peaks that are not within 500bp of any other peak for a given RBP, and also 
excluding peaks with p-values > .01 to minimize the presence of noisy data. These 
peaks were further processed with CLIP Tool Kit (CTK) [20] into narrower, higher 
confidence sets of in vivo binding sites for each RBP; these positive training data 
regions indicate true RBP binding either within or close to them. Finally, the regions 
were padded (equally) on both sides to 1kb total sequence length each in order to 
ensure that the binding motifs were contained within the input contexts, and to be able 
to learn binding effects from more distal sequence elements. 

The negative dataset was generated by randomly sampling transcribed sequences 
(pre-mRNA transcripts) along the hg19 refGene genome from UCSC. The sequences are 
also constrained to the full peak ranges of their corresponding cell line, and only include 
at most 500bp of non-transcribed regions. Since the positive sequences were padded up 
to 1kb, the negative sequences were allowed to overlap with positive sequences, by at 
most 200bp. These random sequences were also evenly distributed between the positive 
and negative strands, which matches the strand distribution of the positive dataset. 

Each one of these positive and negative sequences was then one-hot encoded and 
combined into a 3D tensor, thereby creating a vectorized representation of the sequence 
strings. Since the sequences have variable length, empty space was added to the end of 
shorter sequences as padding in order to ensure consistent dimensionality throughout 
the tensor. 

 
RBP binding model architecture details 
 

In POLARIS’ CNN, the convolution layers compute output by one-dimensional 
convolution operation with a specified kernel size and number of filters. Then, the 
pooling layers compute the maximum value in a specified window of spatially adjacent 
convolution layer outputs for each kernel. The fully connected dense layers on top of 
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the second convolution receives input from all of the outputs from the previous layer, 
thereby integrating information from the full sequence length. The dense layers perform 
a rectified linear (ReLU) activation to the hidden unit cells: 

 
Finally, the sigmoid output layer makes a prediction of whether or not the RBP will 

bind to a given sequence, and scales the prediction to the 0-1 range by the sigmoid 
function: 

 
In order to prevent overfitting, a proportion of outputs were randomly set to zero at 

some of the layers. A dropout proportion of 15% was added after layers 2, 4, and 7. 
Both of the convolution layers also had an L2 regularization term of .01, which again, 
was used to minimize overfitting and add some robustness to the training process. 
Finally, this model uses a stochastic gradient descent optimizer and a binary cross-
entropy objective loss function: 

 
This model was trained with a batch size of 16 and 10 epochs, which was 

empirically observed to lead to a plateau in performance. Specific architecture and final 
hyperparameters are outlined on our GitHub page (see Appendix). 

Both of the RNN models use a binary cross entropy loss function and an RMSprop 
optimizer. They were trained with a batch size of 100 and ran for 10 epochs. Specific 
architecture and hyperparameters are again outlined on our GitHub page (see 
Appendix). 

In the current version of POLARIS, individual RBP models do not share layer 
parameters amongst themselves; we made this design decision to concentrate power to 
detect each individual RBP, rather than force the filters to multi-task (with less 
controlled negative set data, since GC balancing is unique to each RBP). However, 
after individual training these models can trivially be joined together with a shared 
input layer, to have a more condensed full model that simultaneously predicts binding 
for all RBPs at once. 

All neural network models mentioned above were built using the Python keras 
package with a GPU-accelerated Tensorflow (v2.2) backend, and trained using a 
machine with one Nvidia GTX1080 graphics card (2560 CUDA cores) and 8 GB RAM. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2021. ; https://doi.org/10.1101/2021.06.02.446817doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.02.446817
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

With these specifications, the full POLARIS training process takes between 5-10 min 
per RBP. 
 
Annotations and gene sets 

Variants were generally annotated using ANNOVAR (v2017-07-17). Region type 
annotation was done with the annotatr R package, from the Bioconductor suite. 

 
Gradient-weighted Class Activation Mapping (GradCAM) implementation 
 Class activation mapping (and GradCAM in particular) was originally developed 
for image recognition tasks; however, like CNNs themselves, the algorithms translate 
very well to the case of binding motif modeling on 1-dimensional sequence. The method 
produces a coarse localization map highlighting the important regions in the input 
image/sequence for predicting the concept class (specific RBP binding, in our case). 
Given an input, GradCAM captures the outputted feature map of the convolution layer 
and weights every filter in that feature map by the gradient of the class with respect to 
the filter. Intuitively, filter activation is balanced by the importance of each filter to the 
output class, and this weighted sum creates a spatial map of class activation by the 
input: we can then interpolate/stretch the resulting heatmap to original input size and 
overlay onto the image/sequence. In other words, GradCAM allows us to robustly 
highlight the causal subsections of input regardless of how many layers the model 
contains or how the neural network architecture is set up. It also allows our binding 
localization implementation to be mathematically efficient, requiring only the one 
original pass through the network per input; it can thus be run at large scale to 
generate fine-tuned binding maps for all available RBPs at once. 

We implemented the Gradient-weighted Class Activation Mapping (GradCAM) 
algorithm design described in Selvaraju et al., 2017 [26], with the simple modification 
that instead of projecting onto a u x v dimensional image, we find the activation map 
onto a one-dimensional vector of length L base pairs for the case of our RBP binding 
model (which only performs a one-dimensional sequence convolution, rather than 2D 
“image” convolution). In order to obtain the class-discriminative localization map 
𝑀!"#$%&'
( 𝜖	𝑅) of length L base pairs for any RBP class c, we first compute the gradients 

via backpropagation of class c’s score 𝑦(, with respect to feature map / filter activations 
𝐴*, i.e. ∂𝑦

(

∂𝐴*) . These gradients flowing back are global-average-pooled over the length 
dimension (indexed by l) to obtain the neuron importance weights 𝛼*( :  

𝛼!" =	
1
𝐿
&∂𝑦"

∂𝐴#!
*

#
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Equation 1. Averaging class-specific filter activations to find GradCAM neuron 
importance 

During computation of 𝛼*( while backpropagating gradients with respect to 
activations, the exact computation amounts to successive matrix products of the weight 
matrices and the gradient with respect to activation functions till the final convolution 
layer that the gradients are being propagated to. Hence, this weight 𝛼*( represents a 
partial linearization of the deep network downstream from A, and captures the 
“importance” of filter k for a target class c.  

We perform a weighted combination of forward activation maps, and follow it by a 
ReLU to obtain 	

𝑀$%&'()*
" = 	𝑅𝑒𝐿𝑈 /&𝛼!" 	𝐴!

!

0 

Equation 2. Calculation of GradCAM localization by weighting forward activation 
maps 

 

Notice that this results in a coarse heatmap of the same dimensionality as the 
convolutional filters, but is easily stretched back up to the original input size for 
projection (151 positions, in the case of our RBP binding models). A ReLU is applied to 
the linear combination of maps because we are interested in the features that have a 
positive influence on the class of interest; as Selvaraju, et al. note, negative “pixels” or 
positions are likely to belong to other categories and GradCAM localization performance 
is decreased without this ReLU operation. In total, for each sequence we can end up 
with 160 L-length GradCAM heatmaps, one for every RBP class c, that highlight the 
most relevant regions of the input for placement in each respective class. 

 
Calculating average GradCAM Diffusion for RBPs 
 

Diffusion for each RBP was calculated by averaging the Shannon’s entropy H(Xq) of 
the GradCAM heatmap output for each of its known positive eCLIP binding sequences 
q, with each sequence’s entropy first normalized by total binding strength of the 
sequence window (sum of positional GradCAM heatmap vector Xq). This normalization 
step was included in order to focus only on capturing RBP motif diffusion, rather than 
any proxy of binding motif quality (Equation 3). 	

𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛(𝑅𝐵𝑃) =&
𝐻=𝑋+?
∑𝑋+

=
+

&
∑[𝑋+ ∗ log	(

1
𝑋+
)]

∑𝑋++

 

Equation 3. Calculation of RBP by normalization of sequence Entropies by total 
binding strength 
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Data and Code availability  
All training and test data and code are available on GitHub: 
https://github.com/ShenLab/noncoding 
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Appendix 
 
 
Generating GC-balanced negative training data 

POLARIS was trained using eCLIP RBP assay peaks, taken from ENCODE 
database.14 RBPs generally had ≫10k peaks each (median: 28,237 peaks, mean; 38,671 
peaks, sd: 33,087 peaks), a large enough N to suggest feasibility of deep learning 
(Supplementary Figure S1).  

 
Supplementary Figure S1. Histogram of eCLIP peak count per RBP. 
The majority of RBPs had N ≫ 10k peaks, indicating plausibility of applying deep 
learning. Median: 28,237 peaks, mean; 38,671 peaks, sd: 33,087 peaks. 

 
These peaks were further processed with CLIP Tool Kit (CTK) [20] into narrower, 

higher confidence sets of in vivo binding sites for each RBP; these positive training data 
regions indicate true RBP binding either within or close to them. Finally, the regions 
were padded (equally) on both sides to 1kb total sequence length, to be able to learn 
binding effects from reasonably distal sequence elements. Negative sequences for each 
RBP were sampled at random from transcribed regions of the genome, under the 
constraint that the overall GC content distribution of the negatives match that of the 
corresponding positives (Supplementary Figure S2).   

a)                                                                   b)                                          
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Supplementary Figure S2. Comparison of GC content distributions  
Regional GC content distributions are shown for both the positive (eCLIP) dataset (a), and 
the sampled negative (random transcribed regions) dataset (b). GC distribution is 
intentionally matched in the training data (for each RBP binding model), to not accidently 
train this feature. 
 
Clustering GradCAM heatmaps to binding motifs and valleys 
 

We developed a weighted hierarchical clustering algorithm to automatically identify 
motifs and motif valleys from GradCAM heatmaps. Notably, our approach does not rely 
on fixed hyperparameter constraints on optimal motif length k or the number of motifs 
within a window, which can both strongly differ across RBPs and binding regions. We 
first create a pairwise distance matrix D that is the weighted sum of two distinct 
distance matrices: a) Score distance, where score is the GradCAM projection score ϵ 
(0,1) at every position, and b) Sequence distance, which is simply the base pair gap 
between every pair of positions. The relative impact of each of these matrices on D is 
controlled by a weight parameter α, helping guide the function to select motifs of 
reasonable length (higher α prioritizes score similarity over sequence proximity, 
encouraging consideration of longer motifs). An example distance matrix calculation for 
heatmap vector [1,1,1,0,0,0,1,1,1] and balanced α = 0.5 is shown below (Supplementary 
Equation 1).

 
Supp. Equation S1. Example calculation for pairwise distance matrix D for 

GradCAM heatmap  
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We then perform hierarchical clustering on D, producing a hierarchical tree; we 
found the results were most consistent when complete / furthest neighbor clustering was 
used, but the provided algorithm function supports average distance / UPGMA 
(unweighted pair group method with arithmetic mean) or any other distance 
aggregation function as well. We cut the tree at a fixed height h to obtain sequence 
clusters C. Finally, we find aggregate cluster scores S for each c ϵ C by averaging 
member scores within each cluster, and designate the clusters where S > m as RBP 
binding motifs; the remaining clusters represent connected valleys between motif 
plateaus.  

An h of 1 represents a furthest score distance of ~1 between directly neighboring 
clusters for the case of α = 0.5, and worked well in practice for a wide range of α up to 
0.9. We also recommend binding threshold m > 0.5, which can be increased further to 
prioritize specificity over sensitivity in motif discovery. Using this hyperparameter 
selection, we ran our algorithm on eCLIP-positive validation set regions. Qualitatively, 
although resolving borderline cases with low POLARIS binding prediction scores was 
difficult, when binding prediction score was high (generally >0.5), the clustering worked 
very well to extract motifs; we show an example for the important splicing regulator 
QKI below (Supplementary Figure S3).  
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Supplementary Figure S3. GradCAM heatmap clustering example for QKI   
Hierarchical clustering breakdown of a QKI GradCAM heatmap (POLARIS prediction score 
0.629), for a region containing chr10:112708640 C→A mutation. This variant was highlighted in 
our earlier CHD Whole Genome Sequencing study described in Richter, et al. 2020 [27], as its 
genomic location is near the known (and recurrently hit) CHD gene SHOC2. The automatically 
extracted QKI binding motif UA*UAA (before a less confident U/CAUU) is a good match to 
the canonical sequence logo pictured in the top right (taken from mCrossBase, as in Figure 7). 
Clustering parameters used were score (vs. sequence proximity) weight α = 0.9, hierarchical tree 
cut height h = 1, and motif designation threshold m = 0.5 parameters. 

 
Our weighted hierarchical clustering algorithm can break down GradCAM heatmaps 

into binding sites and valleys, with flexible motif length and number of motifs per 
window that better mirror the variability inherent in the diverse binding patterns of 
different RBPs. This clustering method has difficulty in cases of lower POLARIS 
binding score, which could perhaps be addressed with hyperparameter tweaks and 
additional sophistication on distance matrix D to rapidly decay pairwise similarity in 
beyond certain reasonable motif lengths. Hierarchical tree cut height h = 1 was 
observed to work well in practice, but could be further optimized based on concrete 
experiments on RBP motif extraction. 
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