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Distinct epigenomic patterns are associated with
haploinsufficiency and predict risk genes of
developmental disorders
Xinwei Han 1,2,8, Siying Chen 1,3, Elise Flynn1,3, Shuang Wu4, Dana Wintner5 & Yufeng Shen1,6,7

Haploinsufficiency is a major mechanism of genetic risk in developmental disorders. Accurate

prediction of haploinsufficient genes is essential for prioritizing and interpreting deleterious

variants in genetic studies. Current methods based on mutation intolerance in population

data suffer from inadequate power for genes with short transcripts. Here we show hap-

loinsufficiency is strongly associated with epigenomic patterns, and develop a computational

method (Episcore) to predict haploinsufficiency leveraging epigenomic data from a broad

range of tissue and cell types by machine learning methods. Based on data from recent

exome sequencing studies on developmental disorders, Episcore achieves better performance

in prioritizing likely-gene-disrupting (LGD) de novo variants than current methods. We fur-

ther show that Episcore is less-biased by gene size, and complementary to mutation intol-

erance metrics for prioritizing LGD variants. Our approach enables new applications of

epigenomic data and facilitates discovery and interpretation of novel risk variants implicated

in developmental disorders.
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Haploinsufficiency (HIS) due to hemizygous deletions or
heterozygous likely-gene-disrupting (LGD) variants plays
a central role in the pathogenesis of various diseases.

Recent large-scale exome and genome sequencing studies of
developmental disorders, including autism, intellectual disability,
developmental delay, and congenital heart disease (CHD)1–5,
have estimated that de novo LGD mutations explain the cause of
a significant portion of patients with these developmental dis-
orders, and the enrichment rate of de novo LGD variants indi-
cates about half of these variants are associated with disease risk.
However, relatively few genes have multiple LGD variants

(“recurrence”) in a cohort1,2,6, lacking of which provides insuf-
ficient statistical evidence to distinguish individual risk genes
from the ones with random mutations7. On the other hand, most
of the enrichment of LGD variants can be explained by HIS
genes6. Therefore, a comprehensive catalog of HIS genes can
greatly help interpreting and prioritizing mutations in genetic
studies.

Currently, there are two main approaches of predicting HIS
genes based on high-throughput data. Huang et al. use a com-
bination of genetic, transcriptional and protein–protein interac-
tion features from various sources to estimate haploinsufficient
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Fig. 1 Epigenomic profiles are associated with gene haploinsufficiency. a Heatmap showing Spearman correlation between epigenomic features. Three
groups of epigenomic features are included: active promoter, repressive promoter, and enhancer features. Epigenomic features inside each group strongly
correlate with each other. Different feature types, including various histone modifications, histone variant, and DNase I hypersensitivity sites, are color-
coded. Above the heatmap, a bar denoting Spearman correction between epigenomic features and pLI shows many epigenomic features relate to HIS with
varying degree. Data from stem cells or fetal tissues are also marked by color lines. b, c Known HIS and HS genes have different distributions of peak length
of promoter features (b H3K4me3; c H3K27me3). For each gene, peak length was averaged across tissues. d HIS and HS genes have different distributions
of number of interacting enhancers inferred by Epitensor. For each gene, the number of interacting enhancers was averaged across tissues
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probabilities for 12,443 genes8. Using similar input information,
Steinberg et al. generated the probabilities for more (over 19,700)
human genes by a Support Vector Machine (SVM) model9. The
other approach is based on mutation intolerance10–12 in popu-
lations that do not have early onset developmental disorders. Lek
et al.11 estimated each gene’s probability of HIS (pLI: Probability
of being Loss-of-function Intolerant) based on the depletion of
rare LGD variants in over 60,000 exome sequencing samples.
Although effective, the Exome Aggregation Consortium (ExAC)
pLI is biased towards genes with longer transcripts or higher
background mutation rates, since the statistical power of assessing
the significance depends on a relatively large expected number of
rare LGD variants from background mutations.

We sought to predict HIS using epigenomic data that are
orthogonal to genetic variants and generally independent of gene
size. Our method is motivated by recent studies indicating that
specific epigenomic patterns are associated with genes that are
likely haploinsufficient. Specifically, genes with increased breadth
of H3K4me3, typically associated with actively transcribing pro-
moters, are enriched with tumor suppressor genes13, which are
predominantly haploinsufficient based on somatic mutation
patterns14. Another study reported H3K4me3 breadth regulates
transcriptional precision15, which is critical for dosage sensitivity.
These observations led us to hypothesize that haploinsufficient
genes are tightly regulated by a combination of transcription
factors and epigenomic modifications to achieve spatiotemporal
precision of gene expression, and such regulation can be detected
by distinct patterns of epigenomic marks in relevant tissues and
cell types. Based on this model, we develop a Random
Forest–based method (“Episcore”) using epigenomic data from
the Epigenomic Roadmap16 and the Encyclopedia of DNA Ele-
ments (ENCODE) Projects17 as input features and a few hun-
dreds of curated HIS genes as positive training data. To assess the
efficacy of prioritizing candidate risk variants in real-world
genetic studies, we use large data sets of de novo mutations from
recent studies of birth defects and neurodevelopmental disorders
and show that Episcore performs better than existing methods.

Additionally, Episcore is less-biased by gene length or back-
ground mutation rate and complementary to mutation-based
metrics in HIS-based gene prioritization. Our analysis indicates
that epigenomic features in stem cells, brain tissues, and fetal
tissues contribute more to Episcore prediction than others.

Results
HIS genes have distinct epigenomic features. To examine the
correlation of gene HIS and epigenomic patterns, we analyzed
ChIP-seq data from Roadmap and ENCODE projects, including
active (H3K4me3, H3K9ac, and H2A.Z) and repressive
(H3K27me3) promoter modifications, and marks associated
with enhancers (H3K4me1, H3K27ac, DNase I hypersensitivity
sites). We used the width of called ChIP-seq peaks for promoter
features and counted the interacting number of promoters and
enhancers within pre-defined topologically associated domains
(TADs) for enhancer features. As each histone modification is
characterized in multiple cell types, we refer to the combination
of an epigenomic modification and a cell type as one epige-
nomic feature.

Figure 1a shows the correlation among epigenomic features,
and the correlation of epigenomic features and ExAC pLI score.
As expected, active promoter or enhancer marks are highly
correlated with each other and with ExAC pLI score, and they are
anti-correlated with repressor marks in general. The repressor
marks from stem cells or fetal tissues have positive correlations
with active marks and ExAC pLI scores, suggesting many genes
with bivalent marks in stem cells are likely haploinsufficient.

To further investigate the association of HIS and patterns of
epigenomic modifications, we compiled a list of 287 known HIS
genes (Supplementary Data 1) involved in a wide range of human
diseases (Supplementary Data 2) from a recent study8,18 and
human-curated ClinGen dosage sensitivity map. We also
collected a list of 574 haplosufficient (HS) genes, of which one
copy of each gene had been deleted in two or more subjects based
on a copy-number variation (CNV) study in 2026 healthy
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individuals19. For promoter features, HIS and HS genes clearly
have distinct distributions of peak length (Fig. 1b–d). HIS genes
on average have wider peaks of both the active marker H3K4me3
(Fig. 1b) and the repressive marker H3K27me3 (Fig. 1c),
suggesting the difference between HIS and HS genes is not only
on the level of expression but also on distinct mechanisms of
regulation. Furthermore, other epigenomic modifications asso-
ciated with active promoters, including H2A.Z and H3K9ac, also
display wider peaks upstream of HIS genes (Supplementary
Fig. 1A and B). In addition, HIS and HS genes also differ in the
number of interacting enhancers. We adopted a recently
published method EpiTensor20, which decomposes a 3D tensor
representation of histone modifications, DNase-Seq, and RNA-
Seq data to find associations between distant genomic regions.
When restricted to pre-defined TADs, associated regions
identified by EpiTensor correspond well to enhancer−promoter
interactions found by Hi-C. EpiTensor revealed that HIS genes
have a median of nine interacting enhancers, while HS genes have
a median of 0 (p < 10–4, permutation test, Supplementary Fig. 1C).
When averaged across tissues, HIS genes shift towards a larger
number of mean interacting enhancers, as compared to HS genes
(Fig. 1d), supporting the notion that HIS genes have more
regulatory complexity.

Among these 287 known HIS genes, 129 genes (45%) have pLI
smaller than 0.9 or missing value. Some of these genes are well-
known disease risk genes under dominant genetic models, such as
TGFB121, RUNX122, SOX223, SUMO124, NKX2-525, EYA426,
CAV127, PAX228, GATA629, ZIC230, and WT131. These known
HIS genes with pLI < 0.9 have significantly smaller number of
expected loss-of-function variants11 than an average gene
(Supplementary Fig. 2A), and intermediate selection coefficient
of heterozygous LGD variants (Shet)12 (Supplementary Fig. 2B),
pointing to two particular areas (genes that are either short or
under intermediate negative selection) in which HIS prediction
can be improved.

Predicting haploinsufficiency with epigenomic features. To
leverage the strong association between epigenomic patterns and
gene HIS, we developed a computational method to predict HIS
using Random Forest (Fig. 2a) and other supervised learning
models (Supplementary Fig. 3A and B). The input features
included peak length of four promoter marks (H3K4me3,
H3K9ac, H2A.Z, and H3K27me3) and the number of EpiTensor-
inferred interacting enhancers in various tissues. Performance
evaluation by tenfold cross validation and AUC (Area Under
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Curve) in ROC (Receiver Operating Characteristic) curves
showed that all of these methods achieved high AUC values of
0.86~0.88 (Fig. 2b and Supplementary Fig. 3A and B). As Ran-
dom Forest performs the best, results from Random Forest are
chosen as final metrics measuring the probability of being hap-
loinsufficient, termed “Episcore” (Supplementary Data 3). Despite
completely different input data are used, Episcore and ExAC pLI
score displayed overall concordance. The distribution of pLI is

generally bi-modal, with modes at 1 and 011. The genes with
Episcore > 0.6 are much more likely to have pLI values close to 1
than genes with Episcore < 0.4, and the opposite trend at pLI close
to 0 (Supplementary Fig. 3C). Among 3463 genes with Episcore >
0.6, 1518 have pLI scores < 0.5. Some of these genes have been
implicated in human diseases under a dominant model, such as
HEY232, ASF1A33, and HAND234 (Supplementary Table 1).
Similarly to the ones with low pLI values in the positive training
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set, these genes have lower background mutation rate (which is
primarily determined by transcript size) than the ones with large
pLI values (Supplementary Fig. 3D), and are generally under less
severe selection measured by Shet12 (Supplementary Fig. 3E).

Better prioritization of de novo LGD variants by Episcore. A
major goal of predicting HIS is to facilitate prioritization of
variants identified in genetic studies of developmental disorders.
We compared Episcore with pLI scores from ExAC11, Shet
values12, and ranks of mouse heart expression level35, using de
novo LGD variants identified in a recently published whole
exome sequencing study DDD (Deciphering Developmental
Disorders consortium) of 1365 trio families with CHD36. LGD
variants include frameshift, nonsense and canonical splice site
mutations. We only included genes with all four metrics for
comparison, although we note Episcore (19,430 genes) made
predictions for more genes than pLI (18,225 genes), Shet (17,200
genes) and ranks of mouse heart expression level (17,624 genes,
due to loss in ortholog matching). Different predictions are
compared by the enrichment rate of variants. For the same
number of top-ranked genes by each metric, we calculated the
number of LGD variants located in these genes and estimated the
number of LGD variants based on background mutation rate37.
Across a wide range of top-ranked genes, Episcore showed larger
enrichment than ExAC pLI, Shet, or heart expression level (Fig. 3a
and Supplementary Fig. 4A). We also applied the same approach
to de novo synonymous variants identified in the CHD data set
and observed no enrichment (Supplementary Fig. 4B). Addi-
tionally, we compared these predictions by precision-recall-like
curve (PR-like) based on enrichment. Since the total number of
positive variants (true disease-causing variants) is unknown, we
used estimated number of “true positives” instead of “true posi-
tive rate (recall)” in this comparison. For top-ranked genes from
each method, the number of true positives was estimated by
subtracting expected number of LGD variants based on back-
ground mutation rate from the observed in these genes. We
measured precision by dividing the estimated number of true
positives by the total number of observed LGD variants in these
genes. Across a wide range of precision, Episcore consistently
showed superior recall compared to pLI, Shet, and heart expres-
sion level (Fig. 3b) and to earlier methods based on combination
of genetic and protein interaction network data8,9 (Supplemen-
tary Fig. 4C and D). The performance advantage over other HIS-
related score does not change after excluding the genes used in
training (Supplementary Fig. 4E and F).

We obtained a second CHD WES cohort of 2645 parent
−offspring trios from the Pediatric Cardiac Genomics Con-
sortium (PCGC)38 to emulate a replication design. We used the
larger data (PCGC CHD) as discovery and the DDD data as
replication. We found that the genes with a single LGD variant in
PCGC data and “replicated” with at least one LGD variant in the
DDD data have much higher Episcore, than the genes with a
singleton LGD in PCGC data or genes with LGD variants in

controls (unaffected siblings in Simons Simplex Collection autism
study39) (Supplementary Fig. 5).

Episcore is complementary to mutation intolerance metrics.
Haploinsufficiency predicted by mutation intolerance in a general
population (such as ExAC pLI metric) is intrinsically biased
towards genes with longer CDS (coding sequence) or higher
background mutation rates. Fig. 3c, d shows the distribution of
genes with pLI scores >0.9 shifts towards longer CDS length or
higher background mutation rate, as compared to the distribution
of known HIS disease risk genes, while top 20% genes ranked by
Episcore have similar distribution to known HIS disease risk
genes or genes with expression level ranked in top 20% in
developing heart35.

Since Episcore and pLI use distinct types of input data, a
combination of these two scores might achieve better perfor-
mance. We obtained de novo mutation data of 4293 trio families
affected by developmental disorders, mostly with intellectual
disabilities (DDD ID), from a recent study6. Genes with de novo
LGD mutations in DDD ID cases are notably under more severe
selection than the ones in CHD (Supplementary Fig. 4G). We
used a logistic regression to integrate Episcore and pLI in this
data set. Specifically, we used a total of 45 genes with de novo
LGD variants in three or more probands as positives, and
randomly sampled 45 genes from genes with no observed de novo
LGD variant as negatives to estimate coefficients in the logistic
model. Both Episcore and pLI have significant coefficients (p < 10
−3), supporting these two methods convey complementary
information. We found that the resulting meta-score achieved
overall better precision and true positives than Episcore or pLI
alone (Fig. 3e, f), while maintaining similar enrichment burden as
good as any method alone in a broad range of gene ranks.

Fetal tissues and stem cells highly associated with HIS. To
evaluate the association of each epigenomic feature to HIS, we
calculated Spearman correlation coefficients between each feature
and Episcore. These correlation coefficients were analyzed in two
ways. We first grouped them based on the molecular entities they
represent, such that the same epigenomic modification from
different tissues would be in one group. Each of the five resulting
categories has distinct distributions of Spearman correlation
coefficients, suggesting different contributions to Episcore
(Fig. 4a). Except for the repressive mark H3K27me3, most of
them have larger correlation coefficients than gene expression
values, suggesting these features and the model do not merely
reflect expression abundance but also epigenomic regulation
specific to HIS genes. Measured by mean decrease of Gini index,
these groups of features have similar trend in contribution to
Episcore prediction (Supplementary Fig. 6).

We then grouped correlation coefficients based on tissue and
cell types, converted correlation coefficient of each epigenomic
modification to a Z-score using the mean and standard deviation
across the tissue or cell type, and finally averaged the Z-score of

Fig. 4 Contribution of epigenomic features to Episcore prediction. a Spearman correlation between epigenomic feature and Episcore. Features used in the
Random Forest model, including H2A.Z, H3K27me3, H3K4me3, H3K9ac and the number of interacting enhancers, all have positive correlation with
Episcore. Spearman correlation coefficients between gene expression level, measured in RPKM (reads per kilobase per million reads), and Episcore were
also plotted for comparison. b The importance of each tissue in generating Episcore is measured by average Z-score, which is converted from Spearman
correlation coefficients between epigenomic feature and Episcore. Each dot represents one cell line or tissue type indicated by colors. Stem cells and neural
and fetal tissues are the most important tissue and cell types in Episcore prediction. c The epigenomic profile of an example HIS gene, RBFOX2, and a
house-keeping gene, CWC22. Each small box represents 100 bp region around transcription start sites (TSSs) and the shade of the color reflects averaged
fold change of reads between ChIP-seq library and control samples. RBFOX2 has a broad expansion of epigenomic marks while CWC22 is not, and RBFOX2
shows more tissue-specific regulation but CWC22 has narrow peaks in active marks across all the tissues
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all epigenomic modification for each tissue or cell type. The
averaged Z-score represents the importance of this tissue or cell
type to HIS prediction. In general, stem cells and neural tissues
have large average Z-scores (Fig. 4b). Interestingly, for tissues in
the same category, fetal tissues usually have larger average Z-
scores than postnatal tissues.

Finally, to illustrate the contribution of different tissues to HIS,
we examined in detail the histone modifications around TSS of
several known HIS genes. Fig. 4c shows RBFOX2 and CWC22.
RBFOX2 is a CHD risk gene recently discovered through de novo
LGD variants5, and it has expansive H3K4me3 and H3K9ac peaks
in stem/fetal cells and heart and brain tissues, but not in blood
cells. Consistently, it has a reverse pattern in H3K27me3,
extensive in blood cells but limited in other tissues. On the
contrary, CWC22, a known house-keeping gene, shows consistent
but narrow peaks of active marks across tissues.

Discussion
In this study we showed there is a strong correlation between
epigenomics patterns and gene HIS, and developed a computa-
tional method (Episcore) to predict HIS using epigenomic fea-
tures. Episcore had superior yet complementary performance in
prioritization of de novo LGD variants in CHD and neurodeve-
lopmental disorders, compared to mutation intolerance metrics
such as ExAC pLI11.

Existing HIS prediction methods based on intolerance of
mutations have limited statistical power in genes with small
transcript size or under less severe negative selection. Network-
based methods8 are often biased towards well-studied genes9 and
pathways. Epigenomic data have several advantages to address
these issues: (a) they are orthogonal to genetic mutations, and
therefore provide additional information that could improve
power; (b) they are much less biased by transcript size, and will be
most helpful to predict HIS of genes with short transcripts; (c) the
bias with selection coefficient is a reflection of the training data,
which empirically is much smaller than mutation intolerance
metrics; (d) the ability to generate large amount of data without
bias towards well-studied genes. These advantages contribute to
the superior performance of Episcore in prioritizing de novo LGD
variants from exome sequencing studies.

There are likely a variety of mechanisms underlining the cor-
relation of epigenomics patterns and HIS. First, broad H3K4me3
peaks contributed most to Episcore prediction of HIS. Broad
H3K4me3 peaks are associated with reduced transcriptional noise
at cell population and single cell levels15, which is likely required
to maintain precise expression levels of HIS genes in specific cell
types and developmental stages. Second, a previous study found
regulatory complexity is required to achieve cell-type-specific
expression patterns of the lineage-defining genes in hemato-
poietic differentiation40. Consistently, we found the number of
enhancers interacting with the promotor of a gene is highly
correlated with predicted HIS score. Third, many HIS genes are
regulators that define cell lineages during differentiation. Bivalent
chromatin domains in embryonic stem cells, in which both active
marker H3K4me3 and repressor marker H3K27me3 are present,
are generally associated with lineage control genes41. We
observed that H3K27me3 are positively correlated with H3K4me3
in stem cells, and both are correlated with mutation intolerance
(Fig. 1a, c) and Episcore (Fig. 4a). Finally, we found epigenomic
features from stem cells and fetal tissues contribute most to
prediction, highlighting the importance of developmental role in
determining gene HIS.

Our data suggest Episcore is generally better for prioritizing
genes with a broader range of selection coefficient or genes with
smaller transcript size, whereas pLI performs better for genes

under most severe negative selection. Episcore is currently limited
by availability and resolution of epigenomic data, especially cell-
type-specific data from complex tissues or organs such as the
brain, and data at various developmental stages. Complex
developmental disorders, such as autism, involve a large number
of cell types during a broad range of developmental stages. It is
critical to generate and integrate more fine-grained epigenomic
data from cells of specific types at specific time points in order to
improve genetic discoveries in studies of such diseases. We expect
such data sets will become available in near future from ongoing
projects42–44, and will enable us to improve prediction of HIS and
facilitate novel discoveries in genetic studies.

Methods
Collection and preprocessing of training genes. In this study, we used Ensembl
release 75 for gene annotation and TSS (transcription start site) locations. All
genomic coordinates are based on hg19 human genome assembly. Any non-hg19
coordinates were lifted over to hg19 using UCSC LiftOver tool (https://genome.
ucsc.edu/cgi-bin/hgLiftOver). Conversion of gene symbols to Ensembl IDs were
based on annotation tables downloaded from Ensembl BioMart.

Positive training set data (curated haploinsufficient genes) were collected from
these two sources: (1) haploinsufficent training genes used in previous studies8,18 and
(2) genes with haploinsufficient score of 3 in ClinGen Dosage Sensitivity Map (http://
www.ncbi.nlm.nih.gov/projects/dbvar/clingen/). For the negative training set (curated
haplosufficient genes), we used genes deleted in two or more healthy people, based on
CNVs detected in 2026 normal individuals19. Only genes with half or more of its
length covered by any deletion were considered “deleted” in an individual.

The raw training set may have some false positives and false negatives, as it
contained results from automated literature mining that is known to give noisy
output. To optimize the performance, we did the following pruning of the raw
training set: (1) we only kept protein-coding genes in autosomes, as non-protein-
coding genes or genes on sex chromosomes may be under different mechanism of
epigenomic regulation; (2) from the positive training set, we removed genes with
sufficient contradictory evidence (ExAC pLI ≤ 0.1 and expected loss-of-function
variants >1011); and (3) from the negative training set, we removed genes with
sufficient contradictory evidence (pLI ≥ 0.2 and expected loss-of-function variants
>10). After pruning, the positive training set has 287 genes and the negative
training set has 574 genes. The full list of training genes is available in
Supplementary Table 1.

Preprocessing of epigenomic feature data. The uniformly processed peak calling
results of Roadmap and ENCODE projects were downloaded from http://egg2.
wustl.edu/roadmap/web_portal/processed_data.html. For promoter features (H2A.
Z, H3K27me3, H3K4me3, and H3K9ac), “GappedPeaks” were used to allow for
broad domains of ChIP-seq signal. The assignment of a GapppedPeak to a gene
follows these steps in order: (1) for each gene, only TSS of Ensembl canonical
transcripts were used; (2) assigned a GappedPeak to a TSS if the GappedPeak
overlaps with the upstream 5 kb to downstream 1 kb region around the TSS. This
definition of basal cis-regulatory region around promoter follows GREAT tool45.
Assigning one GappedPeak to multiple TSS was allowed; (3) for TSS having more
than 1 GappedPeak assigned, kept the closest one; (4) for genes with multiple TSS
and hence multiple assigned GappedPeaks, kept the longest GappedPeak. After
these four steps, if one gene had been associated with a GappedPeak, then we used
the width of the peak as an epigenomic feature in the following machine learning
models. If a gene had no associated GappedPeak, then the peak width is 0.

To calculate the number of interacting enhancers of a gene, we used two
approaches. In a naïve approach, we counted peaks of ChIP-seq signals that are
associated with enhancers. The ChIP-seq signals we used include H3K4me1,
H3K27ac, and DNase I hypersensitivity site, and each ChIP signal was counted and
recorded separately. We used “NarrowPeak” instead of “GappedPeak” in the
counting to better estimate the number of interacting enhancers, as enhancer
regions are not long and GappedPeak has the risk of merging nearby ChIP-seq
signals. For each gene, we counted peaks in (a) the surrounding TAD, based on
TADs reported in ref.46; or (b) +/− 20kb of each TSS. (Only TSSs of Ensembl
canonical transcripts were used. For genes with multiple TSS and thus several
numbers of interacting enhancers, we kept the largest one.) In a more advanced
approach, we adapted EpiTensor20 to infer gene−enhancer relationship. We made
a few changes when using EpiTensor: (a) we used normalized coverage of ChIP-seq
signal instead of raw coverage in Zhu et al.20; (b) we used the coverage of H3K27ac,
H3K27me3, H3K36me3, H3K4me1, H3K4me3, H3K9me3, DNase I, and RNA-seq
as input for EpiTensor to balance between more input data types and more cell
types included, as not every cell type has all these histone modifications
characterized. With these input features, we were able to achieve better
performance than the aforementioned counting method (Supplementary Fig 1C);
(c) we used enhancer annotation from 15-state chromHMM (http://egg2.wustl.
edu/roadmap/web_portal/chr_state_learning.html#core_15state), while the
original EpiTensor paper20 used results of an earlier version. Based on the output of
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EpiTensor, which predicts enhancer−promoter pairs, we counted the number of
interacting enhancers for each gene in various tissues.

Finally, the results of peak width and number of interacting enhancers were
consolidated into a matrix, with each row being a gene and each column
representing a combination of a tissue and a data type, e.g. “H3K4me3 peak width
in fetal heart”. One combination of a tissue and a data type was referred to as one
epigenomic feature. This matrix was used as input for machine learning models
described in the following section.

Machine learning approaches to predict haploinsufficiency. We applied several
machine learning approaches, including Random Forest, Support Vector Machine
(SVM), and SVM with LASSO feature selection. Random Forest was implemented
using R package “randomForest”. SVM was implemented using R package “e1071”.
LASSO was implemented using R package “glmnet”, with alpha value equal to 1.
For each machine learning method, we assessed the performance based on 100 runs
of tenfold cross-validation. In each run, 10% of the training genes were randomly
selected and left out to form a test set for validation. The remaining data were used
to train the model, after which the test set was used to calculate model sensitivity
and specificity. We used R package “ROCR” to make an ROC curve based on the
100 runs and calculated AUC values.

Finally, we used all training genes used to train the model, and then estimate the
probabilities of being positive (i.e. probabilities of being HIS) for all genes. The
whole process was repeated 30 times and we took the arithmetic mean of the
30 sets of probabilities as the final results.

Episcore and other metrics in variant prioritization. We used two approaches to
compare Episcore and other metrics in variant prioritization, based on “enrichment
of de novo LGD variants”, estimated “number of true-positives”, and “precision”.
The formula to calculate these three statistics is as follows.

For any gene i, the number of expected de novo LGD variants in each gene, Ei,
was calculated as:

Ei ¼ 2 ´N ´ ri;

where N is the number of cases in the sequencing cohort and ri is gene-specific
LGD mutation rate. LGD variants include nonsense, frameshift, and canonical
splice site mutations. The background mutation rate per gene of each mutation
type was obtained from Samocha et al.37. For each gene, ri is the sum of
background mutation rate of nonsense, frameshift, and canonical splice site
mutations.

For a set of genes, the enrichment of de novo LGD variants, D, was calculated
as:

D ¼ M
P

i Ei
;

where M is the total number of observed de novo LGD variants in this gene set. In
this study, we used results from two whole exome sequencing studies on CHD5,36

and another whole exome sequencing study on various developmental disorders6.
For any gene set, the number of true positives, TP, was calculated as:

TP ¼ M �
X

i

Ei:

For any gene set, the precision (positive predictive value), PPV, was calculated
as:

PPV ¼ M �P
i Ei

M
:

For each metric (Episcore, pLI, etc.), a series of top-ranked genes were selected,
such as top 500 genes, top 2000 genes, etc. In the first approach, enrichment of de
novo LGD variants, D, was calculated for any set of top-ranked genes, and then
enrichment values were plotted and compared, as shown in Fig. 3a. In the second
approach, the number of true positives, TP, and the precision (true discovery rate),
PPV, were calculated for any set of top-ranked genes. TP and PPV were plotted
and compared, as shown in Fig. 3b. If the number of all true positives (N) in a study
is known, we can calculate recall as R= TP/N. Although N is generally unknown, it
is a constant; therefore, TP is proportional to R. In this study, we use TP as a proxy
of recall.

To examine the utility of Episcore in prioritizing genes with only one LGD
mutation, we utilized two independent CHD cohorts: DDD (Deciphering
Developmental Disorders consortium) CHD36 and PCGC (Pediatric Cardiac
Genomics Consortium) CHD38. Both these two study included trios from an
earlier CHD study35 to increase detection power. To avoid duplication, we
removed these earlier trios from DDD CHD data.

Epigenomic features critical for the prediction. We calculated a Spearman
correlation coefficient between each epigenomic feature and Episcore. One

epigenomic feature here corresponds to a data type (like H3K4me3 peak width) in
certain tissue/cell type (e.g. fetal heart). To examine which data types are more
important, we plotted these Spearman correlation coefficients by data type, e.g.
correlation coefficients from H3K4me3 peak width were plotted in one section. To
examine what tissue/cell types are more important, we calculated averaged z-score
for each tissue/cell type. The average z-score is calculated following these two steps:
(1) we converted every Spearman correlation coefficient to a Z-score using mean
and standard deviation specific to each data type and (2) for each tissue/cell type,
we averaged the Z-scores from various data types.

Code availability. Episcore prediction is implemented using the random forest R
package, “randomForest”: https://cran.r-project.org/web/packages/randomForest/
index.html.

R scripts used for model training and Episcore prediction are available on
GitHub: https://github.com/ShenLab/episcore.

Data availability. Ensembl release 75 for gene annotation and TSS (transcription
start site) locations: http://feb2014.archive.ensembl.org/downloads.html.

Human genome assembly hg19 for genome coordinates: https://genome.ucsc.
edu/cgi-bin/hgTables.

Epigenomic feature data from Roadmap and ENCODE projects: http://egg2.
wustl.edu/roadmap/web_portal/processed_data.html.

All other data supporting the findings of this study are available within the
paper and its supplementary information files.
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