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Abstract 
Autism spectrum disorder (autism) is a condition with strong but heterogenous genetic 

contribution. Recent exome and genome sequencing studies have uncovered many new risk 
genes through de novo variants. However, a large fraction of enrichment of de novo variants 

observed in cases are not accounted for by known or candidate risk genes, suggesting that the 
majority of risk genes are still unknown. Here we hypothesize that autism risk genes share a few 

common cell-type specific gene expression patterns during brain development, and such 
information can be quantified to improve statistical power of detecting new risk genes. We 

obtained large-scale single-cell RNA-seq data from human fetal brain collected through a range 
of developmental stages, and developed a supervised machine-learning approach "A-risk" 

(Autism risk), to predict the plausibility of autism risk genes across the genome. Using data from 

recent exome sequencing studies of autism, A-risk achieves better performance in prioritizing 
de novo variants than other methods, especially for genes that are less intolerant of loss of 

function variants. We stratified genes based on A-risk and mutation intolerance metrics to 
improve estimation of priors in extTADA and identified 71 candidate risk genes. In particular, 

CLCN4, PRKAR1B, and NR2F1 are potentially new risk genes with further support from 
neurodevelopmental disorders.  Expression patterns of both known and candidate risk genes 

reveals the important role of deep-layer excitatory neurons from adult human cortex in autism 
etiology. With the unprecedented revolution of single-cell transcriptomics and expanding autism 

cohorts with exome or genome sequencing, our method will facilitate systematic discovery of 
novel risk genes and understanding of biological pathogenesis in autism. 
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Introduction 

Autism spectrum disorder (autism) is a phenotypically heterogeneous developmental disorder, 

affecting 1 in 59 children in the United States [1].  Earlier studies have shown a strong genetic 
basis for autism with up to 90% concordance between monozygotic twins [2, 3] and 10-fold 

higher chance for younger sibling to be diagnosed with autism if there is an older affected 

sibling [4, 5]. Simulations estimate one thousand autism risk genes with large effect [6]; 
however, currently only about 100 known risk genes [7] have robust evidence from recent 

studies [6, 8, 9]. These known risk genes only account for less than 5% of autism cases [10]. 
Therefore, it is critically important to identify new risk genes. However, the identification of new 

risk genes based on statistical evidence is limited by lack of power due to sample sizes.  

 A general approach to improve the power for detecting risk genes is to use prior 
knowledge and functional genomic data to predict plausibility of candidate risk genes. Previous 

studies have implemented network-based methods utilizing genotype-phenotype associations 
[1, 11, 12], protein-protein physical interactions [13], brain-specific functional interactions [14] 

and gene coexpression networks [15, 16]. We previously developed a semi-supervised method 
using cell-type specific expression profiles from mouse bulk microarray data based on Principle 

Component Analysis (PCA) [17]. One advantage of using cell-type specific expression is the 
ability to jointly infer plausible risk genes and cell types that are correlated with risk plausibility, 

potentially improving the understanding of the disease mechanism. Our method was limited by 

the lack of spatiotemporal cell-type information from developing brains and the species 
difference between mouse and human. Recent studies have developed machine learning 

approaches to classify autism risk genes with human brain expression data [18, 19], but are still 
limited by the resolution of data in cell types or developmental stages pertinent to the disease.  

 With the motivation to identify new risk genes for autism, here we developed a 

supervised machine learning method based on gradient boosting trees, "A-risk" (Autism risk), 
that can learn known risk genes' expression patterns in single-cell transcriptomics of human 

fetal midbrain and prefrontal cortex, to then predict the plausibility of any gene being an autism 
risk gene. We hypothesize that autism risk genes have distinct spatiotemporal expression 

signatures in developing human brain in neurotypicals. When comparing A-risk to other metrices 
or methods in prioritizing risk variants, we observed better performance of A-risk in prioritizing 

candidate risk variants using de novo variant data of 8838 trios from recent publications[6, 20-
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24]. Furthermore, we showed that A-risk and gene mutation intolerance metrics[25] can be 

combined to improve prior estimation in an empirical Bayesian model and enables identification 
of additional novel risk genes. Finally, we investigated the cell type specific expression patterns 

in adult brain of known and novel autism risk genes and found that they are highly expressed in 
deep-layer excitatory neurons in adult human cortex, suggesting the association of deep 

excitatory neurons in cortex to the etiology of autism.  

Results 

Single-cell expression pattern is correlated with autism risk  

 We obtained two single-cell RNA-seq data sets from human fetal midbrain and prefrontal 
cortex. The midbrain data are mostly from the first trimester [26], while the prefrontal cortex data 

are mostly from the second trimester [27].  Previous studies have suggested the role of 

prefrontal cortex [28-31] and midbrain dopamine system [32-34]. On average, 2302 and 4503 
genes per cell are detected in the midbrain and the prefrontal cortex data, respectively 

(Supplementary Figure 1). We obtained the cell type labels from original publications, and then 
define the expression level of a gene in a cell type as the fraction of cells with ≥1 UMIs (Unique 

Molecular Identifiers) in the cell type at a certain developmental time point. The feature set of 
our data is the combination of cell types and developmental time points (Supplementary Table 

1).  

 To investigate temporal and cell type specific expression pattern of autism risk genes, 
we collected 88 known autism risk genes from the SFARI (Simons Foundation Autism Research 

Initiative) Gene database [7] (released version on 08/29/2019, score 1 or 2), which are genes 
strongly implicated in autism based on expert curation from the literature. We also obtained 154 

genes with at least 1 de novo LGD (likely-gene disrupting) variant in unaffected siblings from an 
exome-sequencing study[6] (Supplementary Table 2), representing non-risk genes with random 

de novo mutations. Known risk genes tend to have a wide range of average expression level in 

both data sets, while non-risk genes have lower average expression (Supplementary Figure 
2A). We performed PCA (Principle Component Analysis) of these two groups of genes using 

expression level from the single cell data sets. The first component partially separates known 
risk genes and non-risk genes (Supplementary Figure 2B). This is consistent with previous 

findings using bulk RNA microarray data from mouse brain [17].  
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 To leverage the temporal and cell type specific expression pattern of known autism risk 

genes, we developed a supervised machine learning method, “A-risk”, to predict plausibility of 
being an autism risk gene for all protein-coding genes (Supplementary Table 3). A-risk is based 

on gradient boosting. We train the model using 88 known autism risk genes as positives and the 
154 non-risk genes as negatives. Figure 1A shows the overall workflow of A-risk. Five-fold 

cross-validation during training achieves an average AUC (Area Under Curve) of ROC 
(Receiver Operating Characteristic) curves at 0.77 (Supplementary Figure 3A). A-risk score 

distribution shows a large separation of known risk genes and non-risk genes (Figure 1B). We 
chose A-risk 0.4, corresponding to top 2642 ranked genes, as a recommended cutoff for 

analysis where a binary stratification of genes is needed.  

Figure 1. A-risk, a gradient boosting tree model to estimate plausibility of being risk genes of 
autism from single-cell RNA-seq data.  (A) A flowchart of the method. (B) A-risk score distribution. A-
risk of all genes in the genome are shown in the histogram in gray. The distribution of A-risk of known 
autism risk genes and randomly mutated genes, which are positive and negative training sets in A-risk 
model respectively, are shown as orange and purple density curves. A-risk score 0.4 is where the 
positives and negatives show separation. (C) “Feature importance” derived from the gradient boosting 
trees model showing cell types from both midbrain late first trimester and prefrontal cortex second 
trimester make substantial contribution to the prediction. The y-axis is the relative important of each 
feature against the max, which is GABAergic neurons in midbrain at week 9.  W, week. Gaba, 
GABAergic neurons. Exc, excitatory neurons. Dopa, Dopaminergic neurons. NbGaba, neuroblast 
GABAergic. Nb, neuroblast. GabaInter, GABAergic interneurons. OMTN, oculomotor and trochlear 
nucleus. 
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 We quantify the contribution of cell types to A-risk prediction by feature importance, a 

score for each feature measuring how valuable it is in constructing the model. The top ranked 
cell types are GABAergic neurons in midbrain at week 9, dopaminergic neurons in midbrain at 

week 10 and prefrontal cortex excitatory neurons at week 12 (Figure 1C). Overall, cell types 
from both midbrain late first trimester and prefrontal cortex second trimester made substantial 

contribution to the prediction. The full list of feature importance from the model is available in 
Supplementary Table 4. 

A-risk improves prioritization of de novo variants in autism cases 

 To investigate if A-risk can prioritize de novo risk variants detected from exome or 

genome sequencing studies, we compiled de novo likely gene-disrupting (LGD) variants of 8838 
trios from recent published studies [6, 20-24] (Supplementary Table 5). We calculated 

enrichment rate of LGD de novo variants in a gene set by the observed number of variants 
divided by the expected number estimated from background mutation rate models [35, 36] 

(Table 1). The enrichment rate for all genes excluding known risk genes is 1.4, suggesting there 
are additional risk genes that harbor de novo LGD variants. When further selecting genes by A-

risk ≥0.4, the enrichment rate reaches 2.1 (p-value=1.3e-32, Poisson test), showing that A-risk 
can increase the signal-to-noise ratio in prioritized candidate risk genes.  

Table 1. A-risk improves prioritization of de novo LGD variant in autism cases (n=8836).  
Observed number 
of variants 

Expected  Enrichment 
Rate 

P-value 

All genes (N=18663) 1341 784 1.7 3e-73 
Excluding known risk genes (N=18575) 1114 774 1.4 9e-31 
A-risk≥0.4, excluding known risk genes (N=2566) 313 148 2.1 1e-32 

 To further assess the utility of A-risk in prioritizing novel risk genes, we compute 

enrichment and precision-recall like curves and compare with other methods. The precision-
recall like curves compare the utility of each method in prioritizing true risk variants[35, 36]. With 

each method, we rank all genes. In all genes above a certain rank threshold, we estimate the 
number of detected true risk variants (“positives”) by the difference of observed number of 

variants (“detected positives”) and expected number. The total number of true positives is 

unknown, but it is a constant independent of methods. Therefore, the estimated number of true 
positives is a proxy of recall. The estimated precision is the number of detected true positives 

divided by the total number of detected positives. Besides the de novo LGD variants we used 
for Table 1, we included deleterious missense (D-mis) variants defined by REVEL score [37] 

≥0.5 in the following analysis. In addition, all known risk genes used in model training are 
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excluded from analysis. We compared A-risk with mouse brain bulk expression ranks at E9.5 

[38], ExAC pLI [25], and the baseline where the corresponding estimates are calculated in all 
protein-coding genes (excluding known risk genes). A-risk achieves consistently higher 

enrichment from the top 2000 to top 4000 ranked genes compared to others and significantly 
higher than the genome baseline (Figure 2A). At the 2500 top rank, roughly corresponding to A-

risk score 0.4, A-risk achieves better precision than other metrices and prioritizes almost half of 
total de novo variants with a relatively high precision (0.46), a 64% improvement from the 

Figure 2. Superior performance of A-risk in prioritization of de novo variants at top 2500 ranks, especially 
in non-constraint genes. A-B, comparison of A-risk to mouse brain expression level, pLI and genome baseline 
in prioritization of de novo LGD and D-mis variants among top genes ranked by each individual metrics, excluding 
known risk genes used in A-risk training. D-mis is defined by REVEL score ≥ 0.5. The de novo variant data is 
compiled from 8838 published trios of exome sequencing studies. (A) Enrichment is the ratio of observed number 
of de novo variants to the expected number of de novo variants estimated by background mutation rate in top 
ranks, ranging from top 1000 to top 4000 genes. (B) Precision and true positives compared in top ranks. True 
positives, which are the difference value between observed number of de novo variants and the expected 
number, represent the recall since the true number of total causal variants is unknown. Precision is computed as 
dividing true positives by the observed number. Genome baseline is the grey star in the plot. C-D, comparison of 
A-risk to mouse brain expression level and genome baseline in prioritizing de novo variants in non-constraint 
genes with pLI<0.9, excluding known risk genes. pLI is excluded from the comparison because it is used in 
stratifying non-constraint genes. (C) Enrichment compared in top ranks by each metric. (D) Precision and true 
positives comparison. 
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genome-wide baseline (precision=0.28) (Figure 2B). Furthermore, in non-constrained genes 

(pLI<0.9), A-risk shows significantly higher enrichment and better precision compared to mouse 
brain expression levels (Figure 2C and D), indicating A-risk is complementary to pLI with the 

potential to optimize risk gene discovery, especially among non-constraint genes. We also 
compared A-risk with other recent methods aimed to find novel autism risk genes, such as D-

score [17] and Krishnan 2016 [14] (Supplementary Figure 4). A-risk again shows superior 
performance in enrichment, precision and true positives from top 1500 to top 4000 ranks of the 

three methods (Supplementary Figure 4A and B), and particularly in non-constrained genes 
(Supplementary Figure 4C and D).  

A-risk informs prior estimation in autism risk gene discovery 

 TADA and extTADA [39, 40] are empirical Bayesian methods used in previous genetic 

studies of autism[8, 20] to identify candidate risk genes based on burden of de novo variants. A 
key feature of such empirical Bayesian method is that it estimates parameters of priors, 

including mean relative risk (R) and prior probability (π) of being a risk gene, from the data. We 
reasoned that metrics associated with plausibility of autism risk, such as A-risk and gene 

constraint (pLI), could be used to improve prior estimation in an empirical Bayesian framework. 
To this end, we stratified a total of 18663 protein-coding genes by A-risk score 0.4 and pLI cutoff 

0.9, resulting in 4 quadrants of genes (Supplementary Figure 5A): 1195 constrained genes with 

high A-risk score (quadrant A), 1842 constrained genes with low A-risk score (quadrant B), 1444 
non-constrained genes with high A-risk score (quadrant C) and 14182 non-constrained genes 

with low A-risk score (quadrant D); then we estimated prior parameters by extTADA in each 
quadrant of genes, using previously reported de novo LGD and D-mis variant data from 8838 

trios[6, 20-24]. Consistent with previous simulation[6], in unstratified analysis, π is about 0.04, 
corresponding to 750 risk genes in total. In stratified analysis, π decreases from quadrant A to 

quadrant D (Supplementary Figure 5B). Constrained genes stratified by A-risk ≥0.4 in quadrant 
A have greater π and R than genes with low A-risk scores in quadrant B (Supplementary Figure 

5C). Genes in quadrant C and D have similar π, but quadrant C genes have a substantially 
greater R that D genes. Overall, A-risk informs the estimation of those priors in both constrained 

and non-constrained genes. 

 extTADA calculates a Bayes factor (BF) and posterior probability of association (PPA) 
for each gene, and then converts PPA to FDR (false discovery rate) to identify candidate risk 
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genes. Common FDR procedures are designed to control the 

proportion of false positives among discoveries. However, with 
a large number of known risk genes ranked among the top by 

PPA, the estimated FDR of novel genes will be smaller than 
their true values, considering the true FDR of known genes is 

0. This will lead to inflation of the support for novel candidate 
genes [41]. To address this issue, we excluded 90 known 

genes with SFARI gene score 1 or 2 in FDR estimation 
(Supplementary Table 6). The stratified analysis yielded 71 

candidate genes passing FDR ≤0.1, whereas unstratified 
analysis yielded 44 genes. Among these genes, 38 were identified exclusively by the stratified 

approach, 11 were exclusively found by the unstratified approach, and 33 were shared (Figure 

3). Previous studies have shown that autism risk genes are often pleiotropic and implicated in 
other neurodevelopmental disorders (NDD) [20, 42-44]. We obtained candidate NDD genes 

from a recent study[41] to seek support of the candidate autism genes. Among the 38 genes 
identified only in stratified approach, 13 are significantly implicated with NDD. In contrast, only 1 

out of the 11 unstratified-exclusive genes is implicated with NDD (Supplementary Figure 6 and 
Supplementary table 7). Among the candidate genes that are also implicated with NDD, several 

are notable with additional support from other studies on autism or syndromes with autistic 
features, such as NR2F2, NR4A2, HNRNPU, CLCN4, and PRKAR1B (Table 2). Candidate risk 

genes located in quadrant C, such as GIGYF1 and PRKAR1B, are among the small number of 
candidate genes that are not constrained (pLI ~ 0).  

Table 2. Notable candidate risk genes by stratified extTADA analysis.  
Gene 

Symbol pLI A-risk Gene 
quadrant 

# of LoF, 
Dmis FDR NDD significant 

genes [41] 
Additional support 

NR2F1 1 0.68 A 1, 1 0.07 TRUE 
Bosch-Boonstra-Schaaf 
Optic Atrophy Syndrome with 
autistic manifestation [45] 

NR4A2 1 0.43 A 1, 1 0.09 TRUE Levy 2018 [46] 

CLCN4 1 0.59 A 0, 3 0.015 TRUE 
Raynaud-Claes syndrome 
(OMIM 300114) with autistic 
features 

PRKAR1B 0.18 0.43 C 1, 2 0.06 TRUE Additional damaging variants 
in Ruzzo 2019 [47] 

GIGYF1 0 0.56 C 5, 0 1e-5 TRUE  
HNRNPU 1 0.48 A 1, 1 0.09 TRUE Mosaic mutations [48] 
 

Figure 3. Stratified extTADA analysis 
by A-risk and pLI identifies more 
candidate risk genes of autism. The 
numbers in the Venn diagram show the 
number of genes identified by stratified 
analysis exclusively (38), by un-
stratified analysis exclusively (11), and 
by both approaches (33). 
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Autism risk genes are highly expressed in deep-layer excitatory neurons in cortex  

 Previous studies have investigated autism risk by cortex laminar architecture. However, 
studies based on co-expression analysis [15, 16] or neurochemical experiments [49, 50] 

reported conflicting conclusions, that either deep or superficial layers of cortex are associated 

with autism. These early studies were based on a small number of high-confidence autism risk 
genes. Here we revisit the question with a much larger list of high-confidence candidate genes 

and single cell RNA-seq data. We obtained a single-nucleus RNA-seq data set of the middle 
temporal gyrus (MTG) of adult human cortex with clear laminar layer information [51].  The 

expression level of those 90 SFARI score 1 or 2 genes and 71 novel candidate risk genes is 
shown in the heatmap in Figure 4A. Hierarchical clustering based on the expression data forms 

four major clusters of genes. Genes in cluster 1 show very little expression in most cell types, 
except that TBR1, RORB, MEIS2, PTCHD1, FEZF2 and NR4A2 are sparsely expressed in 

subtypes excitatory neurons and RELN and PCDH19 are highly expressed in subtypes of 
inhibitory neurons. Cluster 2 genes have more specific expression in deep-layer excitatory 

neurons. Genes in cluster 3 are expressed more widely in neuronal cell types with even higher 

expression in excitatory neurons at deep layers of MTG. Genes in cluster 4 have high 
expression in almost all the neuronal cell types in MTG. Mapping quadrant gene groups defined 

by A-risk and pLI into those 4 distinct expression clusters reveals that both cluster 3 and 4 are 
dominated by quadrant A genes (33 out of 47 genes and 29 out of 32 genes, respectively). 

Cluster 2 contains the largest portion of quadrant C genes (10 out of 16 genes, Figure 4B). 
Consistent with pLI value distribution, a larger fraction of genes in cluster 2 have higher 

observed to expected (O/E) ratio of LoF mutations in gnomAD (genome aggregation 
database)[52] compared to genes in other clusters (Figure 4C). Overall, excitatory neurons 

project from or to deep layers have high expression of the largest subset of known and 
candidate risk genes.  

The heatmap of expression fraction in the same order of genes using the two fetal data 

sets in our model are shown in Supplementary Figure 7. There is no layer information with the 
fetal data. Nevertheless, the expression patterns of candidate risk genes in the two fetal data 

sets generally follows the organization in the adult cortex data, especially for fetal prefrontal 

cortex. Additionally, 14 out of 24 cluster 1 genes with little expression in adult cortex neuronal 
cells have fraction expression ≥0.5 in at least one cell type in fetal prefrontal cortex, suggesting 

a dynamic temporal specific expression of those candidate risk genes. 
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Discussion 

In this study, we developed a new method, "A-risk", to predict plausibility of autism risk 

genes based on single-cell expression patterns in human fetal midbrain and prefrontal cortex. A-
risk was trained using known autism genes. A-risk score reflects the similarity of the cell-type-

specific expression pattern of a gene to known autism genes in aggregation. It achieves 
superior performance in prioritizing de novo risk variants, especially in genes that are less 

intolerant of loss of function variants. Furthermore, A-risk is complementary with gene constraint 
metric (pLI) for improving estimation of priors using an empirical Bayesian association method. 

Applying it to published de novo variant data, we identified 71 novel candidate risk genes, an 

Figure 4. Most autism risk genes have high expression in deep-layer excitatory neurons in prefrontal 
cortex. (A) Hierarchical clustering 90 known autism risk genes and 71 novel candidate genes by expression level 
in cell types from adult cortex middle temporal gyrus (MTG) with laminar information. Genes (shown in rows) form 
4 major clusters, labeled from 1 to 4 on the left. The dash line marks the height cutting the hierarchical tree. Cell 
types are clustered as well and are labels in the format as “major cell type.located layers.marker genes”. Exc, 
excitatory neurons. Inh, inhibitory neurons. Astro, astrocytes. OPC, oligodendrocyte precursor cells. Oligo, 
oligodendrocytes. Micro, microglia. Endo, endothelial cells.  The color (blue to red) of the heatmap indicates 
expression level of a gene in the cell type, calculated as the fraction of cells that have ≥1 UMI mapped to the 
gene in the cell type. Almost all genes in cluster 1 have low expression in all cell types. Most genes in cluster 2 
are specifically expressed in excitatory neurons in deep layers (layer 4 to 6). Cluster 3 genes are highly 
expressed in deep excitatory neurons and have expression in most of neuronal cell types.  Cluster 4 genes are 
highly expressed in almost all neuronal cell types.  Quadrant gene groups stratified by Frisk and pLI are labeled 
by the color bar on the right side with A, B, C and D represented by orange, purple, yellow and green. (B) Number 
of known or candidate risk genes from quadrant gene groups in each expression clusters. Cluster 1 is enriched 
with quadrant B genes (high pLI and low A-risk); cluster 2 is enriched with quadrant C genes (low pLI and high A-
risk); cluster 3 and 4 are enriched with quadrant A genes (high pLI and high A-risk).  (C) The distribution of 
observed over expected (O/E) number of loss of function variants in gnomAD database in the 4 expression 
clusters. Cluster 2 genes have a broad distribution of O/E. Genes in other clusters have generally small O/E. 
 

B C 
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increase of 27 genes over the results using the same statistical method without stratification of 

genes by either A-risk or pLI.  

 Both inhibitory and excitatory neurons in the prefrontal cortex strongly contribute to A-

risk prediction during fetal stages, consistent with previous theory of excitatory and inhibitory 

imbalance in the prefrontal cortex disrupting neural communication[29, 53]. GABAergic 
inhibitory neurons in midbrain have been identified as the most significant contributing feature to 

A-risk prediction, implicating a potential role of midbrain in autism pathogenesis that has been 
understudied.  

Early functional and co-expression network studies [11, 15] based on a small number of 

high-confidence autism risk genes have revealed convergence on excitatory neurons in deep-
cortical layers, however, another co-expression network analysis [16] found significance in 

excitatory neurons in superficial cortical layers. With a much larger number of high-confidence 
risk genes, we revisited the role of neuronal cell types in six different cortical layers. Based on a 

large single nuclei RNA-seq data set from adult cortex, we observed that deep-layer excitatory 
neurons have high expression of the vast majority of known and candidate autism risk genes, 

while other neuronal types or neurons in superficial layers have high expression of a much 
smaller subset of these genes. Since the excitatory neurons residing in layer 5 or 6 of cortex 

extend their axons into other regions of brain and communicate between cortex and other 

critical regions [29, 54], disruption of deep-layer excitatory neurons more likely affects signal 
transmission and communication across different brain regions. Taking account of gene 

mutation intolerance (pLI) and expression similarity to known autism genes (A-risk), the 
candidate risk genes with high A-risk but low pLI (i.e. quadrant C), such as GIGYF1 and 

MBOAT7, are much more likely to have specific expression in deep-layer excitatory neurons. 
Interestingly, a recent study [20] showed GIGYF1 was the most autism-specific gene among all 

candidate autism risk genes based on frequency of disruptive de novo variants in either autistic 
or severe NDD cohorts. This suggests an association of deep-layer excitatory neurons and 

autistic conditions that do not involve severe NDD conditions such as intellectual disabilities. We 
expect that this hypothesis will be tested in future studies with independent high-resolution 

single cells or neural circuit expression data, larger set of high-confidence risk genes, and 

autism cohorts with comprehensive NDD phenotyping.  
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The majority of genes in quadrant C are located in expression cluster 2, where a higher 

proportion of genes shows increased observed to expected (O/E) ratio of LoF mutations, 
suggesting quadrant C genes are less intolerant to LoF mutations or may be incompletely 

penetrant. The genes that have high A-risk and high pLI (quadrant A) are more likely to have 
high expression in a wide range of cell types. Candidate risk genes in cluster 1, among which 16 

genes out of 33 in total have high pLI but low A-risk (quadrant B), have sparse expression in 
adult cortex but more expression in fetal prefrontal cortex, indicating those autism risk genes 

can take effect at limited time points and places. 

 A-risk directly utilized single-cell transcriptomic data as the input of the machine learning 
model to learn expression patterns from known risk genes. Expression patterns inferred from 

single-cell RNA-seq data have better resolution than bulk sequencing data with fine-grained 
cell-type heterogeneity and developmental temporal information. To integrate transcriptomic 

information in risk gene discovery in a principled way, we used A-risk in an empirical Bayesian 
framework to improve prior estimation based on genetic data. This approach yielded 27 more 

candidate risk genes than the original Bayesian approach using only genetic data. With 

increased sample sizes in the future, A-risk can also be used as informative covariates to 
improve FDR estimation [55, 56] in frequentist approaches for risk gene discovery. 

A-risk is currently limited by the availability of comprehensive single-cell expression 

profiles across all critical human brain regions and developmental stages. Profiling neuron cells 
is uniquely challenging since the information in extended projections and axons can be lost 

during sample preparation in single-cell RNA-seq. Even though the data we used in the A-risk 
model is from fetal stages, when extended axons of neurons have not been prolonged, we 

should still interpret with consideration that there could be some genes missed in the data. New 
single-nucleus RNA-seq and subcellular transcriptomic profiling techniques and data sets from 

ongoing projects such as Allen Brain Institutes [57] and Human Cell Atlas [58] will help to 
address this issue [59, 60]. Additionally, A-risk is a supervised learning approach, and inevitably 

it biases towards genes with similar expression patterns to known risk genes in the training. 
Unsupervised approaches could assist in addressing the problem. Finally, abundant and 

specific expression is not sufficient to define a gene as a risk gene. Other factors such as 

functional redundancy [61] and protein complex formation [62] that determine whether a high-
expression gene is a bottleneck in a system, also play a role in the genetic impact. Future 
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studies can consider those factors with single-cell expression profiles to improve accuracy of 

prediction. 

 

Methods 

Data collection and preprocessing 

 In this study, we integrated human fetal brain single-cell RNA-seq data from two 
publications: (1) midbrains from 6 to 11 weeks [26] and (2) prefrontal cortexes from gestational 

weeks 8 to 26[27]. To integrate these two data sets, first, we obtained the UMI counts of single 
cells from their published data. Second, we directly utilized the cell type clusters and time points 

documented in the publications and calculated the expression fraction of each gene in each cell 
type at a particular time point. We combined each individual cell type and time point together to 

generalize one feature in the integrated data. The expression fraction is defined as, for a 
particular gene in a cell type at a developmental time point, the number of cells having the gene 

expressed (UMI >= 1) divided by the total number of cells grouped in the cell type. La Manno et 
al., 2016[26] reported 26 cell types across 6 developmental time points, including an unknown 

cell type ("Unk") where those cells cannot be assigned to any known clusters. We excluded Unk 

cells in the analysis. Zhong et al., 2018 [27] reported clustered 35 cell types through 9 time 
points. Furthermore, we also excluded cell types with fewer than or equal to 10 cells. In total, we 

compiled 95 features in the combined data set, including 47 from La Manno et al., 2016 [26] and 
48 features from Zhong et al., 2018 [27]. 

 We obtained known autism risk genes with score of 1 or 2 in the SFARI database[7] 
(https://gene.sfari.org/database/human-gene/, version released on 08/29/2019) as the positives 

for model training. For the negatives for model training, we collected genes harboring at least 1 
de novo LGD variant in controls from an exome-sequencing study on autism[6]. Two genes 

(KDM5B and CACNA1H) are present in both the initial positive and negative sets. We removed 

these 2 genes from the negative set. In total, we compiled 88 genes in the positive training data 
set and 154 genes in the negative training data set. The full list of training genes is available in 

Supplementary table 1.  
 

Machine learning approaches to predict autism risk genes 
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 We trained a supervised machine-learning method, gradient boosting tree, using the 

training gene set and features derived from single cell data sets. To implement the gradient 
boosting tree machine, we used the python package 

"sklearn.ensemble.GradientBoostingClassifier" with parameters of "n_estimators" as 300, 
"learning_rate" as 0.05 and "max_depth" as 1. We assessed the performance of the model by 

5-fold cross validation. In each cross validation, the model randomly selected 20% of the 
training gene set to serve as a test set for validation and the rest of the genes were used to train 

the model. We implemented the python package "sklearn.metrics.roc_curve" to calculate the 
true positive rate, false positive rate, and to plot the ROC curve and calculate AUC values. After 

training, we predicted the probability for each protein-coding gene in the genome being a 
positive gene (i.e. plausibility for being an autism risk gene) by the trained model. The final A-

risk score is the average probability from the 5-fold training and prediction. The complete A-risk 

score is available in Supplementary table 2.  
 "Feature importance" is derived from the gradient boosting tree model using the function 

"feature_importances_". The final feature importance value for each selected feature is the 
average from the 5-fold training and prediction. All selected features with non-zero feature 

importance are listed in Supplementary table 2.  
 

Comparison of A-risk to other metrices in prioritizing de novo LGD variants 
 We tool two approaches to compare the ability of A-risk and other metrics in prioritization 

of de novo variants. With each metric, we first rank all genes; then in all genes above a certain 
rank threshold (e.g. 1000, 1500, 2000, etc), we estimated the "enrichment of de novo variants", 

"precision", and "true positives". The formulae to compute these estimates are as following: 

 For any gene i, the number of expected de novo variants in each gene, Ei, was 
calculated as: 

     Ei	= 𝟐	 × 	𝑵	 ×	ri 
where N is the number of trios in the compiled data sets and ri is gene-specific background 

mutation rate. Here we tested on de novo gene-likely disrupting (LGD) variants and deleterious 
missense (D-mis) variants (Figure 2). LGD variants include nonsense, frameshift and canonical 

splice site mutations and D-mis variants are defined as variants with REVEL (the Rare Exome 
Variant Ensemble Learner) score >= 0.5[37]. For each gene, ri  is the sum of background 

mutation rate of LGD mutations plus D-mis mutations. 

.CC-BY-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted June 16, 2020. . https://doi.org/10.1101/2020.06.15.153031doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.15.153031
http://creativecommons.org/licenses/by-nd/4.0/


 17 

 The background mutation rate per gene of each mutation type was obtained from a 

previous described mutation model [35, 36]. Briefly, the seven-nucleotide sequence context was 
used to determine the probability of each base in mutating to each other possible base. Then, 

the mutation rate of each functional class in each gene was calculated by adding up point 
mutation rates in the longest transcript. The rate of frameshift indels was presumed to be 1.25 

times the nonsense mutation rate and the rate of genes located on chromosome X is further 
adjusted according to female-to-male ratio in the de novo data set [63].  

 For a set of genes, the enrichment of de novo variants, D, was calculated as: 

      𝑫	 = 	 𝑴
∑ 𝑬𝒊𝒊

 

where M is the total number of observed de novo LGD or D-mis variants in this gene set.  In this 

study, we compiled results from multiple whole exome studies on autism spectrum disorders, 
including total of 8838 trios from Simons Simplex Collection (SSC) [6], Autism Sequencing 

Consortium (ASC) [20], SPARK Pilot [21], MSSNG [22], Takata et al., 2018 [23] and Chen et al., 
2017 [24] cohorts.  

           For any gene set, the number of detected true positives, TP, was calculated as: 
             𝑻𝑷 = 𝑴	 −	∑ 𝑬𝒊𝒊  
           For any gene set, the precision (positive predictive value), PPV, was calculated as: 

                PPV=	M -	 ∑ Eii
M  

 For each metric (A-risk, pLI etc.), a set of genes were selected based on the rank of 

genes by each individual metric, such as top 1000 genes or top 2000 genes, etc. The genome 
baseline is defined by all the genes in the genome. For the first estimate, enrichment of de novo 

variants, D, was calculated for any set of top-ranked genes, and then enrichment values were 
plotted and compared, as shown in Figure 2A. For the second estimate, the number of detected 

true positives, TP, and the precision (true discovery rate), PPV, were calculated for any set of 
top-ranked genes. TP and PPV were plotted and compared, as shown in Figure 2B. Recall 

would be calculated as R = TP/N, where N is the total number of true positives (N). Since N is 
unknown but a constant, TP is proportional to R. Therefore, we use TP as a proxy of recall. To 

avoid inflation of A-risk performance, we excluded all the known autism risk genes used in A-
risk training during calculation of all above estimates. Although there are different numbers of 

genes predicted by each method, we compared all the methods with 18663 protein-coding 

genes, replacing missing scores with the median of each corresponding metrices.  
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 To exam the potential of A-risk in prioritizing de novo variants in non-constrained genes, 

we limit the estimates on genes with pLI score <= 0.9 in each top rank of genes (Figure 2C and 
2D). We excluded pLI as a metric for comparison in those figures since pLI was used to stratify 

constraint and non-constraint genes. Furthermore, we also compare A-risk with the other two 
metrices D-score and Krishnan 2016 (Supplementary Figure 4).  

 
Application of A-risk in stratified risk-gene discovery analysis 

 In this analysis, we used an empirical Bayesian model of rare-variant genetic 
architecture, extTADA (Extended Transmission and de novo Association)[39, 40], which can 

estimate mean effect sizes and risk-gene proportions from the genetic data to identify autism 
candidate risk genes. To inform the prior estimation, we stratify all protein-coding genes into 4 

quadrants by A-risk score 0.4 and pLI 0.9. Specifically, quadrant A consists of genes with A-

risk >=0.4 and pLI >=0.9. Genes in quadrant B are in A-risk <0.4 but pLI >=0.9. Genes in 
quadrant C have A-risk >=0.4 but pLI <0.9, and the rest of the genes are assigned to quadrant 

D. We applied the extTADA model to each quadrant of genes to estimate the priors and 
calculate posterior probability of association (PPA). Then we combined the posterior probability 

of the 4 quadrants together to calculate a final FDR (false discovery rate). To make FDR 
estimation of novel risk genes more accurate, we excluded known autism risk genes used in 

training A-risk model in FDR calculation, as most of these genes are ranked in top by PPA and 
including them in FDR calculation with deflate FDR values of novel risk genes. In parallel, we 

did the same analysis in all genes without stratification by A-risk or pLI. We used the same de 
novo variant data from 8838 trios and background mutation rate data as described above. Final 

results summarizing both stratified and unstratified analysis are available in Supplementary 

Table 3. 
 

Expression pattern clustering of known and candidate autism risk genes  
 We compiled the 71 novel candidate risk genes that pass FDR <=0.1 in stratified 

extTADA analysis together with 90 known risk genes and investigated the expression pattern of 
all those risk genes in a single-cell RNA-seq data of adult human cortex[51]. The data was pre-

processed as described above and the expression fraction for each cell type was pre-computed 
from read-count data downloaded from the publication. Hierarchical clustering was performed 

using "ComplexHeatmap" package in R based on "Euclidean distance" and the heatmap (Figure 

3) was drawn by the "heatmap" function built in the package.  
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Data and code availability 
Single-cell RNA-seq data in La Manno et al., 2016 and Zhong et al., 2018 are downloaded from 
Gene Expression Omnibus (GEO) with accession number as GSE76381and GSE104276 

respectively. Data reported from Hodge et al., 2019 is downloaded from https://portal.brain-
map.org/atlases-and-data/rnaseq.  

 
A-risk model training and prediction is implemented using python package 

"sklearn.ensemble.GradientBoostingClassifier": https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html. 

 

The python script and processed data for A-risk model is available on GitHub: 
https://github.com/ShenLab/A-risk .  
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